ﻻ يوجد ملخص باللغة العربية
We describe the design of a gravitational wave timing array, a novel scheme that can be used to search for low-frequency gravitational waves by monitoring continuous gravitational waves at higher frequencies. We show that observations of gravitational waves produced by Galactic binaries using a space-based detector like LISA provide sensitivity in the nanohertz to microhertz band. While the expected sensitivity of this proposal is not competitive with other methods, it fills a gap in frequency space around the microhertz regime, which is above the range probed by current pulsar timing arrays and below the expected direct frequency coverage of LISA. The low-frequency extension of sensitivity does not require any experimental design change to space-based gravitational wave detectors, and can be achieved with the data products that would already be collected by them.
Pulsar timing experiments are currently searching for gravitational waves, and this dissertation focuses on the development and study of the pulsar timing residual models used for continuous wave searches. The first goal of this work is to re-present
Blazar OJ 287 is a candidate nanoHertz (nHz) gravitational wave (GW) source. In this article, we investigate the GWs generated by OJ 287 and their potential detection through a pulsar timing array (PTA). First, we obtain the orbit and the correspondi
Anisotropic bursts of gravitational radiation produced by events such as super-massive black hole mergers leave permanent imprints on space. Such gravitational wave memory (GWM) signals are, in principle, detectable through pulsar timing as sudden ch
Cosmic strings are potential gravitational wave (GW) sources that can be probed by pulsar timing arrays (PTAs). In this work we develop a detection algorithm for a GW burst from a cusp on a cosmic string, and apply it to Parkes PTA data. We find four
Einstein Telescope (ET) is conceived to be a third generation gravitational-wave observatory. Its amplitude sensitivity would be a factor ten better than advanced LIGO and Virgo and it could also extend the low-frequency sensitivity down to 1--3 Hz,