ترغب بنشر مسار تعليمي؟ اضغط هنا

Gravitational Wave Timing Array

339   0   0.0 ( 0 )
 نشر من قبل Mar\\'ia Jos\\'e Bustamante-Rosell
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe the design of a gravitational wave timing array, a novel scheme that can be used to search for low-frequency gravitational waves by monitoring continuous gravitational waves at higher frequencies. We show that observations of gravitational waves produced by Galactic binaries using a space-based detector like LISA provide sensitivity in the nanohertz to microhertz band. While the expected sensitivity of this proposal is not competitive with other methods, it fills a gap in frequency space around the microhertz regime, which is above the range probed by current pulsar timing arrays and below the expected direct frequency coverage of LISA. The low-frequency extension of sensitivity does not require any experimental design change to space-based gravitational wave detectors, and can be achieved with the data products that would already be collected by them.



قيم البحث

اقرأ أيضاً

146 - Casey McGrath 2021
Pulsar timing experiments are currently searching for gravitational waves, and this dissertation focuses on the development and study of the pulsar timing residual models used for continuous wave searches. The first goal of this work is to re-present much of the fundamental physics and mathematics concepts behind the calculations and theory used in pulsar timing. While there exist many reference sources in the literature, I try to offer a fully self-contained explanation of the fundamentals of this research which I hope the reader will find helpful. The next goal broadly speaking has been to further develop the mathematics behind the currently used pulsar timing models for detecting gravitational waves with pulsar timing experiments. I classify four regimes of interest, governed by frequency evolution and wavefront curvature effects incorporated into the timing residual models. Of these four regimes the plane-wave models are well established in previous literature. I add a new regime which I label Fresnel, as I show it becomes important for significant Fresnel numbers describing the curvature of the gravitational wavefront. Then I give two in-depth studies. The first forecasts the ability of future pulsar timing experiments to probe and measure these Fresnel effects. The second further generalizes the models to a cosmologically expanding universe, and I show how the Hubble constant can be measured directly in the most generalized pulsar timing residual model. This offers future pulsar timing experiments the possibility of being able to procure a purely gravitational wave-based measurement of the Hubble constant. The final chapter shows the initial steps taken to extend this work in the future toward Doppler tracking experiments.
179 - Jie-Wen Chen , Yang Zhang 2018
Blazar OJ 287 is a candidate nanoHertz (nHz) gravitational wave (GW) source. In this article, we investigate the GWs generated by OJ 287 and their potential detection through a pulsar timing array (PTA). First, we obtain the orbit and the correspondi ng GW strain of OJ 287. During the time span of the next 10 years (2019 to 2029), the GW of OJ 287 will be active before 2021, with a peak strain amplitude $8 times 10^{-16}$, and then decay after that. When OJ 287 is silent in the GW channel during 2021 to 2029, the timing residual signals of the PTA will be dominated by the pulsar term of the GW strain and this provides an opportunity to observe this pulsar term. Furthermore, we choose 26 pulsars with white noise below 300 ns to detect the GW signal of OJ 287, evaluating their timing residuals and signal-to-noise ratios (SNRs). The total SNR (with a cadence of 2 weeks in the next 10 years) of the PTA ranges from 1.9 to 2.9, corresponding to a weak GW signal for the current sensitivity level. Subsequently, we investigate the potential measurement of the parameters of OJ 287 using these pulsars. In particular, PSR J0437-4715, with a precisely measured distance, has the potential to constrain the polarization angle with an uncertainty below $8^{deg}$ and this pulsar will play an important role in future PTA observations.
167 - J. B. Wang , G. Hobbs , W. Coles 2014
Anisotropic bursts of gravitational radiation produced by events such as super-massive black hole mergers leave permanent imprints on space. Such gravitational wave memory (GWM) signals are, in principle, detectable through pulsar timing as sudden ch anges in the apparent pulse frequency of a pulsar. If an array of pulsars is monitored as a GWM signal passes over the Earth, the pulsars would simultaneously appear to change pulse frequency by an amount that varies with their sky position in a quadrupolar fashion. Here we describe a search algorithm for such events and apply the algorithm to approximately six years of data from the Parkes Pulsar Timing Array. We find no GWM events and set an upper bound on the rate for events which could have been detected. We show, using simple models of black hole coalescence rates, that this non-detection is not unexpected.
Cosmic strings are potential gravitational wave (GW) sources that can be probed by pulsar timing arrays (PTAs). In this work we develop a detection algorithm for a GW burst from a cusp on a cosmic string, and apply it to Parkes PTA data. We find four events with a false alarm probability less than 1%. However further investigation shows that all of these are likely to be spurious. As there are no convincing detections we place upper limits on the GW amplitude for different event durations. From these bounds we place limits on the cosmic string tension of G mu ~ 10^{-5}, and highlight that this bound is independent from those obtained using other techniques. We discuss the physical implications of our results and the prospect of probing cosmic strings in the era of Square Kilometre Array (SKA).
Einstein Telescope (ET) is conceived to be a third generation gravitational-wave observatory. Its amplitude sensitivity would be a factor ten better than advanced LIGO and Virgo and it could also extend the low-frequency sensitivity down to 1--3 Hz, compared to the 10--20 Hz of advanced detectors. Such an observatory will have the potential to observe a variety of different GW sources, including compact binary systems at cosmological distances. ETs expected reach for binary neutron star (BNS) coalescences is out to redshift $zsimeq 2$ and the rate of detectable BNS coalescences could be as high as one every few tens or hundreds of seconds, each lasting up to several days. %in the sensitive frequency band of ET. With such a signal-rich environment, a key question in data analysis is whether overlapping signals can be discriminated. In this paper we simulate the GW signals from a cosmological population of BNS and ask the following questions: Does this population create a confusion background that limits ETs ability to detect foreground sources? How efficient are current algorithms in discriminating overlapping BNS signals? Is it possible to discern the presence of a population of signals in the data by cross-correlating data from different detectors in the ET observatory? We find that algorithms currently used to analyze LIGO and Virgo data are already powerful enough to detect the sources expected in ET, but new algorithms are required to fully exploit ET data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا