ﻻ يوجد ملخص باللغة العربية
In this paper, we establish a couple of results on extremal problems in bipartite graphs. Firstly, we show that every sufficiently large bipartite graph with average degree $Delta$ and with $n$ vertices on each side has a balanced independent set containing $(1-epsilon) frac{log Delta}{Delta} n$ vertices from each side for small $epsilon > 0$. Secondly, we prove that the vertex set of every sufficiently large balanced bipartite graph with maximum degree at most $Delta$ can be partitioned into $(1+epsilon)frac{Delta}{log Delta}$ balanced independent sets. Both of these results are algorithmic and best possible up to a factor of 2, which might be hard to improve as evidenced by the phenomenon known as `algorithmic barrier in the literature. The first result improves a recent theorem of Axenovich, Sereni, Snyder, and Weber in a slightly more general setting. The second result improves a theorem of Feige and Kogan about coloring balanced bipartite graphs.
The analogue of Hadwigers conjecture for the immersion order states that every graph $G$ contains $K_{chi (G)}$ as an immersion. If true, it would imply that every graph with $n$ vertices and independence number $alpha$ contains $K_{lceil frac nalpha
A total dominator coloring of a graph G is a proper coloring of G in which each vertex of the graph is adjacent to every vertex of some color class. The total dominator chromatic number of a graph is the minimum number of color classes in a total dom
Let $G=(V,E)$ be a graph and $n$ a positive integer. Let $I_n(G)$ be the abstract simplicial complex whose simplices are the subsets of $V$ that do not contain an independent set of size $n$ in $G$. We study the collapsibility numbers of the complexe
Let $G$ be a simple graph with maximum degree $Delta(G)$ and chromatic index $chi(G)$. A classic result of Vizing indicates that either $chi(G )=Delta(G)$ or $chi(G )=Delta(G)+1$. The graph $G$ is called $Delta$-critical if $G$ is connected, $chi(G )
We study the possible values of the matching number among all trees with a given degree sequence as well as all bipartite graphs with a given bipartite degree sequence. For tree degree sequences, we obtain closed formulas for the possible values. For