This short note provides a new and simple proof of the convergence rate for Pengs law of large numbers under sublinear expectations, which improves the corresponding results in Song [15] and Fang et al. [3].
Under the sublinear expectation $mathbb{E}[cdot]:=sup_{thetain Theta} E_theta[cdot]$ for a given set of linear expectations ${E_theta: thetain Theta}$, we establish a new law of large numbers and a new central limit theorem with rate of convergence.
We present some interesting special cases and discuss a related statistical inference problem. We also give an approximation and a representation of the $G$-normal distribution, which was used as the limit in Peng (2007)s central limit theorem, in a probability space.
In this paper, we prove the equivalent conditions of complete moment convergence of the maximum for partial weighted sums of independent, identically distributed random variables under sublinear expectations space. As applications, the Baum-Katz type
results for the maximum for partial weighted sums of independent, identically distributed random variables are established under sublinear expectations space. The results obtained in the article are the extensions of the equivalent conditions of complete moment convergence of the maximum under classical linear expectation space.
We describe a new framework of a sublinear expectation space and the related notions and results of distributions, independence. A new notion of G-distributions is introduced which generalizes our G-normal-distribution in the sense that mean-uncertai
nty can be also described. W present our new result of central limit theorem under sublinear expectation. This theorem can be also regarded as a generalization of the law of large number in the case of mean-uncertainty.
We study the behavior of the capital process of a continuous Bayesian mixture of fixed proportion betting strategies in the one-sided unbounded forecasting game in game-theoretic probability. We establish the relation between the rate of convergence
of the strong law of large numbers in the self-normalized form and the rate of divergence to infinity of the prior density around the origin. In particular we present prior densities ensuring the validity of Erdos-Feller-Kolmogorov-Petrowsky law of the iterated logarithm.
The complete convergence for weighted sums of sequences of independent, identically distributed random variables under sublinear expectations space was studied. By moment inequality and truncation methods, we establish the equivalent conditions of co
mplete convergence for weighted sums of sequences of independent, identically distributed random variables under sublinear expectations space. The results extend the corresponding results obtained by Guo (2012) to those for sequences of independent, identically distributed random variables under sublinear expectations space.
Mingshang Hu
,Xiaojuan Li
,Xinpeng Li
.
(2021)
.
"A note on the convergence rate of Pengs law of large numbers under sublinear expectations"
.
Xinpeng Li
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا