ترغب بنشر مسار تعليمي؟ اضغط هنا

Can diffusive and ballistic transport coexist in integrable quantum lattice models?

56   0   0.0 ( 0 )
 نشر من قبل Jacek Herbrych
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the high-temperature dynamical conductivity $sigma(omega)$ in two one-dimensional integrable quantum lattice models: the anisotropic XXZ spin chain and the Hubbard chain. The emphasis is on the metallic regime of both models, where besides the ballistic component, the regular part of conductivity might reveal a diffusive-like transport. To resolve the low-frequency dynamics, we upgrade the microcanonical Lanczos method enabling studies of finite-size systems with up to $Lleq 32$ sites for XXZ spin model with the frequency resolution $delta omega sim 10^{-3} J$. Results for the XXZ chain reveal a fine structure of $sigma(omega)$ spectra, which originates from the discontinuous variation of the stiffness, previously found at commensurate values of the anisotropy parameter $Delta$. Still, we do not find a clear evidence for a diffusive component, at least not for commensurate values of $Delta$, particularly for $Delta =0.5$, as well as for $Delta to 0$. Similar is the conclusion for the Hubbard model away from half-filling, where the spectra reveal more universal behavior.



قيم البحث

اقرأ أيضاً

We study the ballistic transport in integrable lattice models, i.e., the spin XXZ and Hubbard chains, close to the noninteracting limit. The stiffnesses of spin and charge currents reveal, at high temperatures, a discontinuous reduction (jump) when t he interaction is introduced. We show that the jumps are related to the large degeneracy of the parent noninteracting models. These degeneracies are properly captured by the degenerate perturbation calculations which may be performed for large systems. We find that the discontinuities and the quasilocality of the conserved current in this limit can be traced back to the nonlocal character of an effective interaction. From the latter observation we identify a class of observables which show discontinuities in both models. We also argue that the known local conserved quantities are insufficient to explain the stiffnesses in the Hubbard chain in the regime of weak interaction.
The last decade has witnessed an impressive progress in the theoretical understanding of transport properties of clean, one-dimensional quantum lattice systems. Many physically relevant models in one dimension are Bethe-ansatz integrable, including t he anisotropic spin-1/2 Heisenberg (also called spin-1/2 XXZ chain) and the Fermi-Hubbard model. Nevertheless, practical computations of, for instance, correlation functions and transport coefficients pose hard problems from both the conceptual and technical point of view. Only due to recent progress in the theory of integrable systems on the one hand and due to the development of numerical methods on the other hand has it become possible to compute their finite temperature and nonequilibrium transport properties quantitatively. Most importantly, due to the discovery of a novel class of quasilocal conserved quantities, there is now a qualitative understanding of the origin of ballistic finite-temperature transport, and even diffusive or super-diffusive subleading corrections, in integrable lattice models. We shall review the current understanding of transport in one-dimensional lattice models, in particular, in the paradigmatic example of the spin-1/2 XXZ and Fermi-Hubbard models, and we elaborate on state-of-the-art theoretical methods, including both analytical and computational approaches. Among other novel techniques, we discuss matrix-product-states based simulation methods, dynamical typicality, and, in particular, generalized hydrodynamics. We will discuss the close and fruitful connection between theoretical models and recent experiments, with examples from both the realm of quantum magnets and ultracold quantum gases in optical lattices.
272 - M.P. Seevinck 2010
This white paper aims to identify an open problem in Quantum Physics and the Nature of Reality --namely whether quantum theory and special relativity are formally compatible--, to indicate what the underlying issues are, and put forward ideas about how the problem might be addressed.
Ultracold atoms in optical lattices offer a unique platform for investigating disorder-driven phenomena. While static disordered site potentials have been explored in a number of optical lattice experiments, a more general control over site-energy an d off-diagonal tunneling disorder has been lacking. The use of atomic quantum states as synthetic dimensions has introduced the spectroscopic, site-resolved control necessary to engineer new, more tailored realizations of disorder. Here, by controlling laser-driven dynamics of atomic population in a momentum-space lattice, we extend the range of synthetic-dimension-based quantum simulation and present the first explorations of dynamical disorder and tunneling disorder in an atomic system. By applying static tunneling phase disorder to a one-dimensional lattice, we observe ballistic quantum spreading as in the case of uniform tunneling. When the applied disorder fluctuates on timescales comparable to intersite tunneling, we instead observe diffusive atomic transport, signaling a crossover from quantum to classical expansion dynamics. We compare these observations to the case of static site-energy disorder, where we directly observe quantum localization in the momentum-space lattice.
147 - N. Theodoropoulou 2007
We test whether current-induced magnetization switching due to spin-transfer-torque in ferromagnetic/non-magnetic/ferromagnetic (F/N/F) trilayers changes significantly when scattering within the N-metal layers is changed from ballistic to diffusive. Here ballistic corresponds to a ratio r = lambda/t greater than or equal to 3 for a Cu spacer layer, and diffusive to r = lambda/t less than or equal to 0.4 for a CuGe alloy spacer layer, where lambda is the mean-free-path in the N-layer of fixed thickness t = 10 nm. The average switching currents for the alloy spacer layer are only modestly larger than those for Cu. The best available model predicts a much greater sensitivity of the switching currents to diffuse scattering in the spacer layer than we see.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا