Feedback controllability for blowup points of heat equation


الملخص بالإنكليزية

This paper concerns a controllability problem for blowup points on heat equation. It can be described as follows: In the absence of control, the solution to the linear heat system globally exists in a bounded domain $Omega$. While, for a given time $T>0$ and a point $a$ in this domain, we find a feedback control, which is acted on an internal subset $omega$ of this domain, such that the corresponding solution to this system blows up at time $T$ and holds unique point $a$. We show that $ain omega$ can be the unique blowup point of the corresponding solution with a certain feedback control, and for any feedback control, $ain Omegasetminus overline{omega}$ could not be the unique blowup point.

تحميل البحث