ﻻ يوجد ملخص باللغة العربية
We study the problem of building entity tagging systems by using a few rules as weak supervision. Previous methods mostly focus on disambiguation entity types based on contexts and expert-provided rules, while assuming entity spans are given. In this work, we propose a novel method TALLOR that bootstraps high-quality logical rules to train a neural tagger in a fully automated manner. Specifically, we introduce compound rules that are composed from simple rules to increase the precision of boundary detection and generate more diverse pseudo labels. We further design a dynamic label selection strategy to ensure pseudo label quality and therefore avoid overfitting the neural tagger. Experiments on three datasets demonstrate that our method outperforms other weakly supervised methods and even rivals a state-of-the-art distantly supervised tagger with a lexicon of over 2,000 terms when starting from only 20 simple rules. Our method can serve as a tool for rapidly building taggers in emerging domains and tasks. Case studies show that learned rules can potentially explain the predicted entities.
A challenge for named entity disambiguation (NED), the task of mapping textual mentions to entities in a knowledge base, is how to disambiguate entities that appear rarely in the training data, termed tail entities. Humans use subtle reasoning patter
Weak supervision has shown promising results in many natural language processing tasks, such as Named Entity Recognition (NER). Existing work mainly focuses on learning deep NER models only with weak supervision, i.e., without any human annotation, a
Instead of using expensive manual annotations, researchers have proposed to train named entity recognition (NER) systems using heuristic labeling rules. However, devising labeling rules is challenging because it often requires a considerable amount o
We study learning named entity recognizers in the presence of missing entity annotations. We approach this setting as tagging with latent variables and propose a novel loss, the Expected Entity Ratio, to learn models in the presence of systematically
Named entity recognition (NER) is a well-studied task in natural language processing. However, the widely-used sequence labeling framework is difficult to detect entities with nested structures. In this work, we view nested NER as constituency parsin