ترغب بنشر مسار تعليمي؟ اضغط هنا

An Evolutionary Algorithm for Task Scheduling in Crowdsourced Software Development

73   0   0.0 ( 0 )
 نشر من قبل Raz Saremi
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The complexity of software tasks and the uncertainty of crowd developer behaviors make it challenging to plan crowdsourced software development (CSD) projects. In a competitive crowdsourcing marketplace, competition for shared worker resources from multiple simultaneously open tasks adds another layer of uncertainty to the potential outcomes of software crowdsourcing. These factors lead to the need for supporting CSD managers with automated scheduling to improve the visibility and predictability of crowdsourcing processes and outcomes. To that end, this paper proposes an evolutionary algorithm-based task scheduling method for crowdsourced software development. The proposed evolutionary scheduling method uses a multiobjective genetic algorithm to recommend an optimal task start date. The method uses three fitness functions, based on project duration, task similarity, and task failure prediction, respectively. The task failure fitness function uses a neural network to predict the probability of task failure with respect to a specific task start date. The proposed method then recommends the best tasks start dates for the project as a whole and each individual task so as to achieve the lowest project failure ratio. Experimental results on 4 projects demonstrate that the proposed method has the potential to reduce project duration by a factor of 33-78%.



قيم البحث

اقرأ أيضاً

310 - Hui Xi , Dong Xu , Young-Jun Son 2020
A novel modeling framework is proposed for dynamic scheduling of projects and workforce assignment in open source software development (OSSD). The goal is to help project managers in OSSD distribute workforce to multiple projects to achieve high effi ciency in software development (e.g. high workforce utilization and short development time) while ensuring the quality of deliverables (e.g. code modularity and software security). The proposed framework consists of two models: 1) a system dynamic model coupled with a meta-heuristic to obtain an optimal schedule of software development projects considering their attributes (e.g. priority, effort, duration) and 2) an agent based model to represent the development community as a social network, where development managers form an optimal team for each project and balance the workload among multiple scheduled projects based on the optimal schedule obtained from the system dynamic model. To illustrate the proposed framework, a software enhancement request process in Kuali foundation is used as a case study. Survey data collected from the Kuali development managers, project managers and actual historical enhancement requests have been used to construct the proposed models. Extensive experiments are conducted to demonstrate the impact of varying parameters on the considered efficiency and quality.
Developing sustainable scientific software for the needs of the scientific community requires expertise in both software engineering and domain science. This can be challenging due to the unique needs of scientific software, the insufficient resource s for modern software engineering practices in the scientific community, and the complexity of evolving scientific contexts for developers. These difficulties can be reduced if scientists and developers collaborate. We present a case study wherein scientists from the SuperNova Early Warning System collaborated with software developers from the Scalable Cyberinfrastructure for Multi-Messenger Astrophysics project. The collaboration addressed the difficulties of scientific software development, but presented additional risks to each team. For the scientists, there was a concern of relying on external systems and lacking control in the development process. For the developers, there was a risk in supporting the needs of an user-group while maintaining core development. We mitigated these issues by utilizing an Agile Scrum framework to orchestrate the collaboration. This promoted communication and cooperation, ensuring that the scientists had an active role in development while allowing the developers to quickly evaluate and implement the scientists software requirements. While each system was still in an early stage, the collaboration provided benefits for each group: the scientists kick-started their development by using an existing platform, and the developers utilized the scientists use-case to improve their systems. This case study suggests that scientists and software developers can avoid some difficulties of scientific computing by collaborating and can address emergent concerns using Agile Scrum methods.
There is growing acknowledgement within the software engineering community that a theory of software development is needed to integrate the myriad methodologies that are currently popular, some of which are based on opposing perspectives. We have bee n developing such a theory for a number of years. In this paper, we overview our theory and report on a recent ontological analysis of the theory constructs. We suggest that, once fully developed, this theory, or one similar to it, may be applied to support situated software development, by providing an overarching model within which software initiatives might be categorised and understood. Such understanding would inevitably lead to greater predictability with respect to outcomes.
The allocation of tasks can be seen as a success-critical management activity in distributed development projects. However, such task allocation is still one of the major challenges in global software development due to an insufficient understanding of the criteria that influence task allocation decisions. This article presents a qualitative study aimed at identifying and understanding such criteria that are used in practice. Based on interviews with managers from selected software development organizations, criteria currently applied in industry are identified. One important result is, for instance, that the sourcing strategy and the type of software to be developed have a significant effect on the applied criteria. The article presents the goals, design, and results of the study as well as an overview of related and future work.
The quest for robust heuristics that are able to solve more than one problem is ongoing. In this paper, we present, discuss and analyse a technique called Evolutionary Squeaky Wheel Optimisation and apply it to two different personnel scheduling prob lems. Evolutionary Squeaky Wheel Optimisation improves the original Squeaky Wheel Optimisations effectiveness and execution speed by incorporating two extra steps (Selection and Mutation) for added evolution. In the Evolutionary Squeaky Wheel Optimisation, a cycle of Analysis-Selection-Mutation-Prioritization-Construction continues until stopping conditions are reached. The aim of the Analysis step is to identify below average solution components by calculating a fitness value for all components. The Selection step then chooses amongst these underperformers and discards some probabilistically based on fitness. The Mutation step further discards a few components at random. Solutions can become incomplete and thus repairs may be required. The repairs are carried out by using the Prioritization to first produce priorities that determine an order by which the following Construction step then schedules the remaining components. Therefore, improvement in the Evolutionary Squeaky Wheel Optimisation is achieved by selective solution disruption mixed with interative improvement and constructive repair. Strong experimental results are reported on two different domains of personnel scheduling: bus and rail driver scheduling and hospital nurse scheduling.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا