FaVIQ: FAct Verification from Information-seeking Questions


الملخص بالإنكليزية

Despite significant interest in developing general purpose fact checking models, it is challenging to construct a large-scale fact verification dataset with realistic claims that would occur in the real world. Existing claims are either authored by crowdworkers, thereby introducing subtle biases that are difficult to control for, or manually verified by professional fact checkers, causing them to be expensive and limited in scale. In this paper, we construct a challenging, realistic, and large-scale fact verification dataset called FaVIQ, using information-seeking questions posed by real users who do not know how to answer. The ambiguity in information-seeking questions enables automatically constructing true and false claims that reflect confusions arisen from users (e.g., the year of the movie being filmed vs. being released). Our claims are verified to be natural, contain little lexical bias, and require a complete understanding of the evidence for verification. Our experiments show that the state-of-the-art models are far from solving our new task. Moreover, training on our data helps in professional fact-checking, outperforming models trained on the most widely used dataset FEVER or in-domain data by up to 17% absolute. Altogether, our data will serve as a challenging benchmark for natural language understanding and support future progress in professional fact checking.

تحميل البحث