ﻻ يوجد ملخص باللغة العربية
Photodetector nonlinearity, the main limiting factor in terms of optical power in the detection chain, is corrected to improve the signal-to-noise ratio of a short-time measurement in dual-comb spectroscopy. An iterative correction algorithm minimizing out-of-band spectral artifacts based on nonlinearity correction methods used in classical Fourier-transform spectrometers is presented. The exactitude of the nonlinearity correction is validated using a low power linear measurement. Spectroscopic lines of H$^{12}$CN are provided and the error caused by the saturation of the detector is corrected yielding residuals limited by the measurement noise.
The impact of photodetector nonlinearity on dual-comb spectrometers is described and compared to that of Michelson-based Fourier transform spectrometers (FTS). The optical sampling occurring in the dual-comb approach, being the key difference with FT
Dual-comb spectroscopy is a rapidly developing technique that enables moving parts-free, simultaneously broadband and high-resolution measurements with microseconds of acquisition time. However, for high sensitivity measurements and extended duration
Two semiconductor optical frequency combs consuming less than 1 W of electrical power are used to demonstrate high-sensitivity mid-infrared dual-comb spectroscopy in the important 3-4 $mu$m spectral region. The devices are 4 millimeters long by 4 mic
Dual-comb (DC) ranging is an established method for high-precision and high-accuracy distance measurements. It is, however, restricted by an inherent length ambiguity and the requirement for complex control loops for comb stabilization. Here, we pres
Dual-comb spectroscopy has emerged as an indispensable analytical technique in applications that require high resolution and broadband coverage within short acquisition times. Its experimental realization, however, remains hampered by intricate exper