We design and demonstrate a novel technique for the active stabilization of the relative phase between seed and pump in an optical parametric oscillator (OPO). We show that two error signals for the stabilization of the OPO frequency, based on Pound-Drever-Hall (PDH), and of the seed-pump relative phase can be obtained just from the reflected beam of the OPO cavity, without the necessity of two different modulation and demodulation stages. We also analyze the effect of the pump in the cavity stabilization for different seed-pump relative phase configurations, resulting in an offset in the PDH error signal, which has to be compensated. Finally, an application of our technique in the reliable generation of squeezed coherent states is presented.