DP Train, then DP Compress: Model Compression in Deep Potential Molecular Dynamics


الملخص بالإنكليزية

Machine learning based interatomic potential energy surface (PES) models are revolutionizing the field of molecular modeling. However, although much faster than electronic structure schemes, these models suffer from a lower efficiency as compared to typical empirical force fields due to more sophisticated computations involved. Herein, we report a model compression scheme for boosting the performance of the Deep Potential (DP) model, a deep learning based PES model. This scheme, we call DP Compress, is an efficient post-processing step after the training of DP models (DP Train). DP Compress combines several DP-specific compression techniques, which typically speed up DP- based molecular dynamics simulations by an order of magnitude faster, and consume an order of magnitude less memory. We demonstrate that DP Compress is sufficiently accurate by testing a variety of physical properties of Cu, H2O, and Al-Cu-Mg systems. DP Compress applies to both CPU and GPU machines and is publicly available at https://github.com/deepmodeling/deepmd-kit.

تحميل البحث