ﻻ يوجد ملخص باللغة العربية
Machine learning based interatomic potential energy surface (PES) models are revolutionizing the field of molecular modeling. However, although much faster than electronic structure schemes, these models suffer from a lower efficiency as compared to typical empirical force fields due to more sophisticated computations involved. Herein, we report a model compression scheme for boosting the performance of the Deep Potential (DP) model, a deep learning based PES model. This scheme, we call DP Compress, is an efficient post-processing step after the training of DP models (DP Train). DP Compress combines several DP-specific compression techniques, which typically speed up DP- based molecular dynamics simulations by an order of magnitude faster, and consume an order of magnitude less memory. We demonstrate that DP Compress is sufficiently accurate by testing a variety of physical properties of Cu, H2O, and Al-Cu-Mg systems. DP Compress applies to both CPU and GPU machines and is publicly available at https://github.com/deepmodeling/deepmd-kit.
In this work, we propose an effective scheme (called DP-Net) for compressing the deep neural networks (DNNs). It includes a novel dynamic programming (DP) based algorithm to obtain the optimal solution of weight quantization and an optimization proce
In recent years, promising deep learning based interatomic potential energy surface (PES) models have been proposed that can potentially allow us to perform molecular dynamics simulations for large scale systems with quantum accuracy. However, making
A comprehensive microscopic understanding of ambient liquid water is a major challenge for $ab$ $initio$ simulations as it simultaneously requires an accurate quantum mechanical description of the underlying potential energy surface (PES) as well as
The main result of this article is sub-additivity of the dp-rank. We also show that the study of theories of finite dp-rank can not be reduced to the study of its dp-minimal types, and discuss the possible relations between dp-rank and VC-density.
We propose a fast method for the calculation of short-range interactions in molecular dynamics simulations. The so-called random-batch list method is a stochastic version of the classical neighbor-list method to avoid the construction of a full Verle