Chaotic diffusion in multi-scale turbulence


الملخص بالإنكليزية

Turbulence plays a very important role in determining the transport of energy and particles in tokamaks. This work is devoted to studying the chaotic diffusion in multi-scale turbulence in the context of the nonlinear wave-particle interaction. Turbulent waves with different scales of characteristic wavelengths can interact with the same group of charged particles when their phase velocity is close to the velocities of the charged particles. A multi-wavenumber standard mapping is developed to model the chaotic diffusion in multi-scale turbulence. The diffusion coefficient is obtained by calculating the correlation functions analytically. It is found that the contribution of the largest scale turbulence dominates the deviation from the quasi-linear diffusion coefficient. Increasing the overlap parameters of the smaller scale turbulence by just the increasing the wavenumber cannot make the diffusion coefficient to be the quasi-linear diffusion coefficient for a finite wave amplitude. Especially, in two-scale turbulence, the diffusion coefficient is mostly over the quasi-linear diffusion coefficient in the large wavenumber (of the smaller scale turbulence) limit. As more scales of components are added in the turbulence, the diffusion coefficient approaches the quasi-linear diffusion coefficient. The results can also be applied to other resonance-induced multi-scale turbulence in Hamiltonian systems with 1.5 or 2 degrees of freedom.

تحميل البحث