ترغب بنشر مسار تعليمي؟ اضغط هنا

An analytical solution of the isentropic vortex problem in the special relativistic magnetohydrodynamics

76   0   0.0 ( 0 )
 نشر من قبل Junming Duan
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

The isentropic vortex problem is frequently solved to test the accuracy of numerical methods and verify corresponding code. Unfortunately, its existing solution was derived in the relativistic magnetohydrodynamics by numerically solving an ordinary differential equation. This note provides an analytical solution of the 2D isentropic vortex problem with explicit algebraic expressions in the special relativistic hydrodynamics and magnetohydrodynamics and extends it to the 3D case.



قيم البحث

اقرأ أيضاً

This paper studies high-order accurate entropy stable nodal discontinuous Galerkin (DG) schemes for the ideal special relativistic magnetohydrodynamics (RMHD). It is built on the modified RMHD equations with a particular source term, which is analogo us to the Powells eight-wave formulation and can be symmetrized so that an entropy pair is obtained. We design an affordable fully consistent two-point entropy conservative flux, which is not only consistent with the physical flux, but also maintains the zero parallel magnetic component, and then construct high-order accurate semi-discrete entropy stable DG schemes based on the quadrature rules and the entropy conservative and stable fluxes. They satisfy the semidiscrete entropy inequality for the given entropy pair and are integrated in time by using the high-order explicit strong stability preserving Runge-Kutta schemes to get further the fully-discrete nodal DG schemes. Extensive numerical tests are conducted to validate the accuracy and the ability to capture discontinuities of our schemes. Moreover, our entropy conservative flux is compared to an existing flux through some numerical tests. The results show that the zero parallel magnetic component in the numerical flux can help to decrease the error in the parallel magnetic component in one-dimensional tests, but two entropy conservative fluxes give similar results since the error in the magnetic field divergence seems dominated in the two-dimensional tests.
In this paper we present a framework which provides an analytical (i.e., infinitely differentiable) transformation between spatial coordinates and orbital elements for the solution of the gravitational two-body problem. The formalism omits all singul ar variables which otherwise would yield discontinuities. This method is based on two simple real functions for which the derivative rules are only required to be known, all other applications -- e.g., calculating the orbital velocities, obtaining the partial derivatives of radial velocity curves with respect to the orbital elements -- are thereafter straightforward. As it is shown, the presented formalism can be applied to find optimal instants for radial velocity measurements in transiting exoplanetary systems to constrain the orbital eccentricity as well as to detect secular variations in the eccentricity or in the longitude of periastron.
175 - Elliot J. Carr 2020
Multispecies contaminant transport in the Earths subsurface is commonly modelled using advection-dispersion equations coupled via first-order reactions. Analytical and semi-analytical solutions for such problems are highly sought after but currently limited to either one species, homogeneous media, certain reaction networks, specific boundary conditions or a combination thereof. In this paper, we develop a semi-analytical solution for the case of a heterogeneous layered medium and a general first-order reaction network. Our approach combines a transformation method to decouple the multispecies equations with a recently developed semi-analytical solution for the single-species advection-dispersion-reaction equation in layered media. The generalized solution is valid for arbitrary numbers of species and layers, general Robin-type conditions at the inlet and outlet and accommodates both distinct retardation factors across layers or distinct retardation factors across species. Four test cases are presented to demonstrate the solution approach with the reported results in agreement with previously published results and numerical results obtained via finite volume discretisation. MATLAB code implementing the generalized semi-analytical solution is made available.
Implementing the modal method in the electromagnetic grating diffraction problem delivered by the curvilinear coordinate transformation yields a general analytical solution to the 1D grating diffraction problem in a form of a T-matrix. Simultaneously it is shown that the validity of the Rayleigh expansion is defined by the validity of the modal expansion in a transformed medium delivered by the coordinate transformation.
In this study, a shape optimization problem for the two-dimensional stationary Navier--Stokes equations with an artificial boundary condition is considered. The fluid is assumed to be flowing through a rectangular channel, and the artificial boundary condition is formulated so as to take into account the possibility of ill-posedness caused by the usual do-nothing boundary condition. The goal of the optimization problem is to maximize the vorticity of the said fluid by determining the shape of an obstacle inside the channel. Meanwhile, the shape variation is limited by a perimeter functional and a volume constraint. The perimeter functional was considered to act as a Tikhonov regularizer and the volume constraint is added to exempt us from topological changes in the domain. The shape derivative of the objective functional was formulated using the rearrangement method, and this derivative was later on used for gradient descent methods. Additionally, an augmented Lagrangian method and a class of solenoidal deformation fields were considered to take into account the goal of volume preservation. Lastly, numerical examples based on the gradient descent and the volume preservation methods are presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا