ﻻ يوجد ملخص باللغة العربية
We choose the Reduction Formula, PCAC and Low Energy Theory to reduce the $S$ matrix of a OZI allowed two-body strong decay involving a light pseudoscalar, the covariant transition amplitude formula with relativistic wave functions as input is derived. After confirm this method by the decay $D^*(2010)to Dpi$, we study the state $D^*(2007)$, and the full width $Gamma_{rm{th}}(D^*(2007))=53.8pm0.7$ keV is obtained. Supposing the newly observed $D_{s0}(2590)^{+}$ to be the state $D_s(2^1S_0)^+$, we find its decay width $Gamma$ is highly sensitive to the $D_{s0}(2590)^{+}$ mass, which result in the meaningless comparison of widths by different models with various input masses. Instead of width, we introduce a model independent quantity $X$ and the ratio $Gamma/{|{vec P_f}|^3}$, which are almost mass independent, to give us useful information. The results show that, all the existing theoretical predictions $X_{D_s(2S) to D^*K}=0.25sim 0.41$ and $Gamma/{|{vec P_f}|^3}=0.81sim1.77$ MeV$^{-2}$ are much smaller than experimental data $0.585^{+0.015}_{-0.035}$ and $4.54^{+0.25}_{-0.52}$ MeV$^{-2}$. Further compared with $X^{ex}_{D^*(2010) to Dpi}=0.58$, the current data $X^{ex}_{D_s(2S) to D^*K}=0.585^{+0.015}_{-0.035}$ is too big to be an reasonable value, so to confirm $D_{s0}(2590)^{+}$ as the state $D_s(2^1S_0)^+$, more experimental studies are needed.
The recently discovered $D_{s0}(2590)$ state by the LHCb collaboration was regarded as the first excited state of $^1S_{0}$ charmed-strange meson. Its mass is, however, lower than the Godfrey-Isgur quark model prediction by about 80 MeV. In this work
The scalar meson $D_{s0}^*(2317)$ is found 37(17)MeV below DK threshold in a lattice simulation of the $J^P=0^+$ channel using, for the first time, both DK as well as $bar sc$ interpolating fields. The simulation is done on $N_f=2+1$ gauge configurat
Lately, the LHCb Collaboration reported the discovery of two new states in the $B^+rightarrow D^+D^- K^+$ decay, i.e., $X_0(2866)$ and $X_1(2904)$. In the present work, we study whether these states can be understood as $D^*bar{K}^*$ molecules from t
After the discovery of the new $Omega^{*}$ state, the ratio of the branching fractions of $Omega(2012)to bar{K}piXi$ relative to $bar{K}Xi$ decay channel was investigated by the Belle Collaboration recently. The measured $11.9%$ up limit on this rati
We report improved measurements of the product branching fractions ${mathcal B}(B^+rightarrowbar{D}^0 D_{s0}^{*+} (2317))times{mathcal B}( D_{s0} ^{*+}(2317)rightarrow D_s^{+}pi^0) =(8.0^{+1.3}_{-1.2} pm 1.1 pm 0.4)times 10^{-4}$ and ${mathcal B}(B^0