ترغب بنشر مسار تعليمي؟ اضغط هنا

Scalable Zonotopic Under-approximation of Backward Reachable Sets for Uncertain Linear Systems

94   0   0.0 ( 0 )
 نشر من قبل Liren Yang
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Zonotopes are widely used for over-approximating forward reachable sets of uncertain linear systems. In this paper, we use zonotopes to achieve more scalable algorithms that under-approximate backward reachable sets for uncertain linear systems. The main difference is that the backward reachability analysis is a two-player game and involves Minkowski difference operations, but zonotopes are not closed under such operations. We under-approximate this Minkowski difference with a zonotope, which can be obtained by solving a linear optimization problem. We further develop an efficient zonotope order reduction technique to bound the complexity of the obtained zonotopic under-approximations. The proposed approach is evaluated against existing approaches using randomly generated instances, and illustrated with an aircraft position control system.



قيم البحث

اقرأ أيضاً

120 - Mohamed Serry 2020
In this note, we propose a method to under-approximate finite-time reachable sets and tubes for a class of continuous-time linear uncertain systems. The class under consideration is the linear time-varying (LTV) class with integrable time-varying sys tem matrices and uncertain initial and input values belonging to known convex compact sets. The proposed method depends upon the iterative use of constant-input reachable sets which results in convergent under-approximations in the sense of Hausdorff distance. We illustrate our approach through two numerical examples.
In this paper, we first propose a method that can efficiently compute the maximal robust controlled invariant set for discrete-time linear systems with pure delay in input. The key to this method is to construct an auxiliary linear system (without de lay) with the same state-space dimension of the original system in consideration and to relate the maximal invariant set of the auxiliary system to that of the original system. When the system is subject to disturbances, guaranteeing safety is harder for systems with input delays. Ability to incorporate any additional information about the disturbance becomes more critical in these cases. Motivated by this observation, in the second part of the paper, we generalize the proposed method to take into account additional preview information on the disturbances, while maintaining computational efficiency. Compared with the naive approach of constructing a higher dimensional system by appending the state-space with the delayed inputs and previewed disturbances, the proposed approach is demonstrated to scale much better with the increasing delay time.
We consider the problem of stabilization of a linear system, under state and control constraints, and subject to bounded disturbances and unknown parameters in the state matrix. First, using a simple least square solution and available noisy measurem ents, the set of admissible values for parameters is evaluated. Second, for the estimated set of parameter values and the corresponding linear interval model of the system, two interval predictors are recalled and an unconstrained stabilizing control is designed that uses the predicted intervals. Third, to guarantee the robust constraint satisfaction, a model predictive control algorithm is developed, which is based on solution of an optimization problem posed for the interval predictor. The conditions for recursive feasibility and asymptotic performance are established. Efficiency of the proposed control framework is illustrated by numeric simulations.
In this work, we perform safety analysis of linear dynamical systems with uncertainties. Instead of computing a conservative overapproximation of the reachable set, our approach involves computing a statistical approximate reachable set. As a result, the guarantees provided by our method are probabilistic in nature. In this paper, we provide two different techniques to compute statistical approximate reachable set. We have implemented our algorithms in a python based prototype and demonstrate the applicability of our approaches on various case studies. We also provide an empirical comparison between the two proposed methods and with Flow*.
We present a new continuous Lyapunov Redesign (LR) methodology for the robust stabilization of a class of uncertain time-delay systems that is based on the so-called Super Twisting Algorithm. The main feature of the proposed approach is that allows o ne to simultaneously adjust the chattering effect and achieve asymptotic stabilization of the uncertain system, which is lost when continuous approximation of the unit control is considered. At the basis of the Super Twisting based LR methodology is a class of Lyapunov-Krasovskii functionals, whose particular form of its time derivative allows one to define a delay-free sliding manifold on which some class of smooth uncertainties are compensated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا