ترغب بنشر مسار تعليمي؟ اضغط هنا

Hierarchical Policies for Cluttered-Scene Grasping with Latent Plans

177   0   0.0 ( 0 )
 نشر من قبل Lirui Wang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

6D grasping in cluttered scenes is a longstanding problem in robotic manipulation. Open-loop manipulation pipelines may fail due to inaccurate state estimation, while most end-to-end grasping methods have not yet scaled to complex scenes with obstacles. In this work, we propose a new method for end-to-end learning of 6D grasping in cluttered scenes. Our hierarchical framework learns collision-free target-driven grasping based on partial point cloud observations. We learn an embedding space to encode expert grasping plans during training and a variational autoencoder to sample diverse grasping trajectories at test time. Furthermore, we train a critic network for plan selection and an option classifier for switching to an instance grasping policy through hierarchical reinforcement learning. We evaluate and analyze our method and compare against several baselines in simulation, and demonstrate that the latent planning can generalize to the real-world cluttered-scene grasping task. Our videos and code can be found at https://sites.google.com/view/latent-grasping .



قيم البحث

اقرأ أيضاً

Acquiring a diverse repertoire of general-purpose skills remains an open challenge for robotics. In this work, we propose self-supervising control on top of human teleoperated play data as a way to scale up skill learning. Play has two properties tha t make it attractive compared to conventional task demonstrations. Play is cheap, as it can be collected in large quantities quickly without task segmenting, labeling, or resetting to an initial state. Play is naturally rich, covering ~4x more interaction space than task demonstrations for the same amount of collection time. To learn control from play, we introduce Play-LMP, a self-supervised method that learns to organize play behaviors in a latent space, then reuse them at test time to achieve specific goals. Combining self-supervised control with a diverse play dataset shifts the focus of skill learning from a narrow and discrete set of tasks to the full continuum of behaviors available in an environment. We find that this combination generalizes well empirically---after self-supervising on unlabeled play, our method substantially outperforms individual expert-trained policies on 18 difficult user-specified visual manipulation tasks in a simulated robotic tabletop environment. We additionally find that play-supervised models, unlike their expert-trained counterparts, are more robust to perturbations and exhibit retrying-till-success behaviors. Finally, we find that our agent organizes its latent plan space around functional tasks, despite never being trained with task labels. Videos, code and data are available at learning-from-play.github.io
Recent advances in on-policy reinforcement learning (RL) methods enabled learning agents in virtual environments to master complex tasks with high-dimensional and continuous observation and action spaces. However, leveraging this family of algorithms in multi-fingered robotic grasping remains a challenge due to large sim-to-real fidelity gaps and the high sample complexity of on-policy RL algorithms. This work aims to bridge these gaps by first reinforcement-learning a multi-fingered robotic grasping policy in simulation that operates in the pixel space of the input: a single depth image. Using a mapping from pixel space to Cartesian space according to the depth map, this method transfers to the real world with high fidelity and introduces a novel attention mechanism that substantially improves grasp success rate in cluttered environments. Finally, the direct-generative nature of this method allows learning of multi-fingered grasps that have flexible end-effector positions, orientations and rotations, as well as all degrees of freedom of the hand.
We address the problem of learning hierarchical deep neural network policies for reinforcement learning. In contrast to methods that explicitly restrict or cripple lower layers of a hierarchy to force them to use higher-level modulating signals, each layer in our framework is trained to directly solve the task, but acquires a range of diverse strategies via a maximum entropy reinforcement learning objective. Each layer is also augmented with latent random variables, which are sampled from a prior distribution during the training of that layer. The maximum entropy objective causes these latent variables to be incorporated into the layers policy, and the higher level layer can directly control the behavior of the lower layer through this latent space. Furthermore, by constraining the mapping from latent variables to actions to be invertible, higher layers retain full expressivity: neither the higher layers nor the lower layers are constrained in their behavior. Our experimental evaluation demonstrates that we can improve on the performance of single-layer policies on standard benchmark tasks simply by adding additional layers, and that our method can solve more complex sparse-reward tasks by learning higher-level policies on top of high-entropy skills optimized for simple low-level objectives.
This paper introduces Action Image, a new grasp proposal representation that allows learning an end-to-end deep-grasping policy. Our model achieves $84%$ grasp success on $172$ real world objects while being trained only in simulation on $48$ objects with just naive domain randomization. Similar to computer vision problems, such as object detection, Action Image builds on the idea that object features are invariant to translation in image space. Therefore, grasp quality is invariant when evaluating the object-gripper relationship; a successful grasp for an object depends on its local context, but is independent of the surrounding environment. Action Image represents a grasp proposal as an image and uses a deep convolutional network to infer grasp quality. We show that by using an Action Image representation, trained networks are able to extract local, salient features of grasping tasks that generalize across different objects and environments. We show that this representation works on a variety of inputs, including color images (RGB), depth images (D), and combined color-depth (RGB-D). Our experimental results demonstrate that networks utilizing an Action Image representation exhibit strong domain transfer between training on simulated data and inference on real-world sensor streams. Finally, our experiments show that a network trained with Action Image improves grasp success ($84%$ vs. $53%$) over a baseline model with the same structure, but using actions encoded as vectors.
Using simulation to train robot manipulation policies holds the promise of an almost unlimited amount of training data, generated safely out of harms way. One of the key challenges of using simulation, to date, has been to bridge the reality gap, so that policies trained in simulation can be deployed in the real world. We explore the reality gap in the context of learning a contextual policy for multi-fingered robotic grasping. We propose a Grasping Objects Approach for Tactile (GOAT) robotic hands, learning to overcome the reality gap problem. In our approach we use human hand motion demonstration to initialize and reduce the search space for learning. We contextualize our policy with the bounding cuboid dimensions of the object of interest, which allows the policy to work on a more flexible representation than directly using an image or point cloud. Leveraging fingertip touch sensors in the hand allows the policy to overcome the reduction in geometric information introduced by the coarse bounding box, as well as pose estimation uncertainty. We show our learned policy successfully runs on a real robot without any fine tuning, thus bridging the reality gap.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا