ﻻ يوجد ملخص باللغة العربية
Atomic-like defects in solids are not considered to be identical owing to the imperfections of host lattice. Here, we found that even under ambient conditions, negatively charged nitrogen-vacancy (NV$^-$) centers in diamond could still manifest identical at Hz-precision level, corresponding to a 10$^{-7}$-level relative precision, while the lattice strain can destroy the identity by tens of Hz. All parameters involved in the NV$^-$-$^{14}$N Hamiltonian are determined by formulating six nuclear frequencies at 10-mHz-level precision and measuring them at Hz-level precision. The most precisely measured parameter, the $^{14}$N quadrupole coupling $P$, is given by -4945754.9(8) Hz, whose precision is improved by nearly four orders of magnitude compared with previous measurements. We offer an approach for performing precision measurements in solids and deepening our understandings of NV centers as well as other solid-state defects. Besides, these high-precision results imply a potential application of a robust and integrated atomic-like clock based on ensemble NV centers.
High-fidelity projective readout of a qubits state in a single experimental repetition is a prerequisite for various quantum protocols of sensing and computing. Achieving single-shot readout is challenging for solid-state qubits. For Nitrogen-Vacancy
We report a versatile method to efficiently polarize single nuclear spins in diamond, which is based on optical pumping of a single NV color center and mediated by a level-anti crossing in its excited state. A nuclear spin polarization higher than 98
We investigated the depth dependence of coherence times of nitrogen-vacancy (NV) centers through precisely depth controlling by a moderately oxidative at 580{deg}C in air. By successive nanoscale etching, NV centers could be brought close to the diam
We present a scheme to generate entangled photons using the NV centers in diamond. We show how the long-lived nuclear spin in diamond can mediate entanglement between multiple photons thereby increasing the length of entangled photon string. With the
Hybrid quantum registers consisting of different types of qubits offer a range of advantages as well as challenges. The main challenge is that some types of qubits react only slowly to external control fields, thus considerably slowing down the infor