ﻻ يوجد ملخص باللغة العربية
Some mechanisms of cardiac arrhythmias can be presented as a composition of elementary acts of block and reflection on the contacts of homogeneous areas of the conducting tissue. For study this phenomena we use an axiomatic one-dimensional model of interaction of cells of excitable tissue. The model has four functional parameters that determine the functional states durations of the cell. We show that the cells of a homogeneous excitable tissue, depending on the ratio of the durations of the functional intervals, can operate in the mode of solitary waves conduction or in one of three modes of selfgeneration. It is proved that the propagation of a solitary wave through the boundary of homogeneous conducting tissues can be accompanied by a block or multiplex reflection. Block and reflection are unidirectional phenomena, and there are not compatible on the same boundary. Systematized rules of transmitting, block and reflection waves at the boundary of homogeneous conducting tissues open up new possibilities for design mechanisms of generation and analyzing complex heart rate patterns.
The electrical coupling between myocytes and fibroblasts and the spacial distribution of fibroblasts within myocardial tissues are significant factors in triggering and sustaining cardiac arrhythmias but their roles are poorly understood. This articl
The analytical theory of our earlier study (Mortensen et al. (2021), Mathematical Medicine and Biology, 38(1), pp. 106-131) is extended to address the outstanding cases of fibroblast barrier distribution and myocyte strait distribution. In particular
Coordination in circular and longitudinal muscle motions are of crucial importance in the motor function of gastrointestinal (GI) tract. Intestinal wall motions depend on myogenic-active properties of smooth muscles layers of intestinal wall, which i
Background: The global spread of the severe acute respiratory syndrome (SARS) epidemic has clearly shown the importance of considering the long-range transportation networks in the understanding of emerging diseases outbreaks. The introduction of ext
Compressive sensing (CS) is a signal processing technique that enables sub-Nyquist sampling and near lossless reconstruction of a sparse signal. The technique is particularly appealing for neural signal processing since it avoids the issues relevant