ترغب بنشر مسار تعليمي؟ اضغط هنا

Revisiting the formation mechanism for coronal rain from previous studies

83   0   0.0 ( 0 )
 نشر من قبل Leping Li
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Solar coronal rain is classified generally into two categories: flare-driven and quiescent coronal rain. The latter is observed to form along both closed and open magnetic field structures. Recently, we proposed that some of the quiescent coronal rain events, detected in the transition region and chromospheric diagnostics, along loop-like paths could be explained by the formation mechanism for quiescent coronal rain facilitated by interchange magnetic reconnection between open and closed field lines. In this study, we revisited 38 coronal rain reports from the literature. From these earlier works, we picked 15 quiescent coronal rain events out of the solar limb, mostly suggested to occur in active region closed loops due to thermal nonequilibrium, to scrutinize their formation mechanism. Employing the extreme ultraviolet images and line-of-sight magnetograms, the evolution of the quiescent coronal rain events and their magnetic fields and context coronal structures is examined. We find that 6, comprising 40%, of the 15 quiescent coronal rain events could be totally or partially interpreted by the formation mechanism for quiescent coronal rain along open structures facilitated by interchange reconnection. The results suggest that the quiescent coronal rain facilitated by interchange reconnection between open and closed field lines deserves more attention.



قيم البحث

اقرأ أيضاً

Flare-driven coronal rain can manifest from rapidly cooled plasma condensations near coronal loop-tops in thermally unstable post-flare arcades. We detect 5 phases that characterise the post-flare decay: heating, evaporation, conductive cooling domin ance for ~120 s, radiative / enthalpy cooling dominance for ~4700 s and finally catastrophic cooling occurring within 35-124 s leading to rain strands with s periodicity of 55-70 s. We find an excellent agreement between the observations and model predictions of the dominant cooling timescales and the onset of catastrophic cooling. At the rain formation site we detect co-moving, multi-thermal rain clumps that undergo catastrophic cooling from ~1 MK to ~22000 K. During catastrophic cooling the plasma cools at a maximum rate of 22700 K s-1 in multiple loop-top sources. We calculated the density of the EUV plasma from the DEM of the multi-thermal source employing regularised inversion. Assuming a pressure balance, we estimate the density of the chromospheric component of rain to be 9.21x10^11 +-1.76x10^11 cm-3 which is comparable with quiescent coronal rain densities. With up to 8 parallel strands in the EUV loop cross section, we calculate the mass loss rate from the post-flare arcade to be as much as 1.98x10^12 +/-4.95x10^11 g s-1. Finally, we reveal a close proximity between the model predictions of 10^5.8 K and the observed properties between 10^5.9 K and 10^6.2 K, that defines the temperature onset of catastrophic cooling. The close correspondence between the observations and numerical models suggests that indeed acoustic waves (with a sound travel time of 68 s) could play an important role in redistributing energy and sustaining the enthalpy-based radiative cooling.
Small and elongated, cool and dense blob-like structures are being reported with high resolution telescopes in physically different regions throughout the solar atmosphere. Their detection and the understanding of their formation, morphology and ther modynamical characteristics can provide important information on their hosting environment, especially concerning the magnetic field, whose understanding constitutes a major problem in solar physics. An example of such blobs is coronal rain, a phenomenon of thermal non- equilibrium observed in active region loops, which consists of cool and dense chromospheric blobs falling along loop-like paths from coronal heights. So far, only off-limb coronal rain has been observed and few reports on the phenomenon exist. In the present work, several datasets of on-disk H{alpha} observations with the CRisp Imaging SpectroPolarimeter (CRISP) at the Swedish 1-m Solar Telescope (SST) are analyzed. A special family of on-disk blobs is selected for each dataset and a statistical analysis is carried out on their dynamics, morphology and temperatures. All characteristics present distributions which are very similar to reported coronal rain statistics. We discuss possible interpretations considering other similar blob-like structures reported so far and show that a coronal rain interpretation is the most likely one. Their chromospheric nature and the projection effects (which eliminate all direct possibility of height estimation) on one side, and their small sizes, fast dynamics, and especially, their faint character (offering low contrast with the background intensity) on the other side, are found as the main causes for the absence until now of the detection of this on-disk coronal rain counterpart.
Using extreme-ultraviolet images, we recently proposed a new and alternative formation mechanism for coronal rain along magnetically open field lines due to interchange magnetic reconnection. In this paper we report coronal rain at chromospheric and transition region temperatures originating from the coronal condensations facilitated by reconnection between open and closed coronal loops. For this, we employ the Interface Region Imaging Spectrograph (IRIS) and the Atmospheric Imaging Assembly (AIA) of the Solar Dynamics Observatory (SDO). Around 2013 October 19, a coronal rain along curved paths was recorded by IRIS over the southeastern solar limb. Related to this, we found reconnection between a system of higher-lying open features and lower-lying closed loops that occurs repeatedly in AIA images. In this process, the higher-lying features form magnetic dips. In response, two sets of newly reconnected loops appear and retract away from the reconnection region. In the dips, seven events of cooling and condensation of coronal plasma repeatedly occur due to thermal instability over several days, from October 18 to 20. The condensations flow downward to the surface as coronal rain, with a mean interval between condensations of 6.6 hr. In the cases where IRIS data were available we found the condensations to cool all the way down to chromospheric temperatures. Based on our observations we suggest that some of the coronal rain events observed at chromospheric temperatures could be explained by the new and alternative scenario for the formation of coronal rain, where the condensation is facilitated by interchange reconnection.
We report on the discovery of periodic coronal rain in an off-limb sequence of {it Solar Dynamics Observatory}/Atmospheric Imaging Assembly images. The showers are co-spatial and in phase with periodic (6.6~hr) intensity pulsations of coronal loops o f the sort described by Auchere et al. (2014) and Froment et al. (2015, 2017). These new observations make possible a unified description of both phenomena. Coronal rain and periodic intensity pulsations of loops are two manifestations of the same physical process: evaporation / condensation cycles resulting from a state of thermal nonequilibrium (TNE). The fluctuations around coronal temperatures produce the intensity pulsations of loops, and rain falls along their legs if thermal runaway cools the periodic condensations down and below transition-region (TR) temperatures. This scenario is in line with the predictions of numerical models of quasi-steadily and footpoint heated loops. The presence of coronal rain -- albeit non-periodic -- in several other structures within the studied field of view implies that this type of heating is at play on a large scale.
Coronal rain consists of cool and dense plasma condensations formed in coronal loops as a result of thermal instability. Previous numerical simulations of thermal instability and coronal rain formation have relied on artificially adding a coronal hea ting term to the energy equation. To reproduce large-scale characteristics of the corona, using more realistic coronal heating prescription is necessary. We analyse coronal rain formation and evolution in a 3-dimensional radiative magnetohydrodynamic simulation spanning from convection zone to corona which is self-consistently heated by magnetic field braiding as a result of convective motions. We investigate the spatial and temporal evolution of energy dissipation along coronal loops which become thermally unstable. Ohmic dissipation in the model leads to the heating events capable of inducing sufficient chromospheric evaporation into the loop to trigger thermal instability and condensation formation. The cooling of the thermally unstable plasma occurs on timescales comparable to the duration of the individual impulsive heating events. The impulsive heating has sufficient duration to trigger thermal instability in the loop but does not last long enough to lead to coronal rain limit cycles. We show that condensations can either survive and fall into the chromosphere or be destroyed by strong bursts of Joule heating associated with a magnetic reconnection events. In addition, we find that condensations can also form along open magnetic field lines.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا