ترغب بنشر مسار تعليمي؟ اضغط هنا

Decision-Making Technology for Autonomous Vehicles Learning-Based Methods, Applications and Future Outlook

89   0   0.0 ( 0 )
 نشر من قبل Qi Liu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Autonomous vehicles have a great potential in the application of both civil and military fields, and have become the focus of research with the rapid development of science and economy. This article proposes a brief review on learning-based decision-making technology for autonomous vehicles since it is significant for safer and efficient performance of autonomous vehicles. Firstly, the basic outline of decision-making technology is provided. Secondly, related works about learning-based decision-making methods for autonomous vehicles are mainly reviewed with the comparison to classical decision-making methods. In addition, applications of decision-making methods in existing autonomous vehicles are summarized. Finally, promising research topics in the future study of decision-making technology for autonomous vehicles are prospected.



قيم البحث

اقرأ أيضاً

Autonomous parking technology is a key concept within autonomous driving research. This paper will propose an imaginative autonomous parking algorithm to solve issues concerned with parking. The proposed algorithm consists of three parts: an imaginat ive model for anticipating results before parking, an improved rapid-exploring random tree (RRT) for planning a feasible trajectory from a given start point to a parking lot, and a path smoothing module for optimizing the efficiency of parking tasks. Our algorithm is based on a real kinematic vehicle model; which makes it more suitable for algorithm application on real autonomous cars. Furthermore, due to the introduction of the imagination mechanism, the processing speed of our algorithm is ten times faster than that of traditional methods, permitting the realization of real-time planning simultaneously. In order to evaluate the algorithms effectiveness, we have compared our algorithm with traditional RRT, within three different parking scenarios. Ultimately, results show that our algorithm is more stable than traditional RRT and performs better in terms of efficiency and quality.
190 - Hong Shu , Teng Liu , Xingyu Mu 2020
Knowledge transfer is a promising concept to achieve real-time decision-making for autonomous vehicles. This paper constructs a transfer deep reinforcement learning framework to transform the driving tasks in inter-section environments. The driving m issions at the un-signalized intersection are cast into a left turn, right turn, and running straight for automated vehicles. The goal of the autonomous ego vehicle (AEV) is to drive through the intersection situation efficiently and safely. This objective promotes the studied vehicle to increase its speed and avoid crashing other vehicles. The decision-making pol-icy learned from one driving task is transferred and evaluated in another driving mission. Simulation results reveal that the decision-making strategies related to similar tasks are transferable. It indicates that the presented control framework could reduce the time consumption and realize online implementation.
Aerial cinematography is revolutionizing industries that require live and dynamic camera viewpoints such as entertainment, sports, and security. However, safely piloting a drone while filming a moving target in the presence of obstacles is immensely taxing, often requiring multiple expert human operators. Hence, there is demand for an autonomous cinematographer that can reason about both geometry and scene context in real-time. Existing approaches do not address all aspects of this problem; they either require high-precision motion-capture systems or GPS tags to localize targets, rely on prior maps of the environment, plan for short time horizons, or only follow artistic guidelines specified before flight. In this work, we address the problem in its entirety and propose a complete system for real-time aerial cinematography that for the first time combines: (1) vision-based target estimation; (2) 3D signed-distance mapping for occlusion estimation; (3) efficient trajectory optimization for long time-horizon camera motion; and (4) learning-based artistic shot selection. We extensively evaluate our system both in simulation and in field experiments by filming dynamic targets moving through unstructured environments. Our results indicate that our system can operate reliably in the real world without restrictive assumptions. We also provide in-depth analysis and discussions for each module, with the hope that our design tradeoffs can generalize to other related applications. Videos of the complete system can be found at: https://youtu.be/ookhHnqmlaU.
196 - Teng Liu , Hong Wang , Bing Lu 2020
Decision-making strategy for autonomous vehicles de-scribes a sequence of driving maneuvers to achieve a certain navigational mission. This paper utilizes the deep reinforcement learning (DRL) method to address the continuous-horizon decision-making problem on the highway. First, the vehicle kinematics and driving scenario on the freeway are introduced. The running objective of the ego automated vehicle is to execute an efficient and smooth policy without collision. Then, the particular algorithm named proximal policy optimization (PPO)-enhanced DRL is illustrated. To overcome the challenges in tardy training efficiency and sample inefficiency, this applied algorithm could realize high learning efficiency and excellent control performance. Finally, the PPO-DRL-based decision-making strategy is estimated from multiple perspectives, including the optimality, learning efficiency, and adaptability. Its potential for online application is discussed by applying it to similar driving scenarios.
Increasing the response time of emergency vehicles(EVs) could lead to an immeasurable loss of property and life. On this account, tactical decision making for EVs microscopic control remains an indispensable issue to be improved. In this paper, a rul e-based avoiding strategy(AS) is devised, that CVs in the prioritized zone ahead of EV should accelerate or change their lane to avoid it. Besides, a novel DQN method with speed-adaptive compact state space (SC-DQN) is put forward to fit in EVs high-speed feature and generalize in various road topologies. Afterward, the execution of AS feedback to the input of SC-DQN so that they joint organically as a combinational method. The following approach reveals that DRL could complement rule-based avoiding strategy in generalization, and on the contrary, the rule-based avoiding strategy could complement DRL in stability, and their combination could lead to less response time, lower collision rate and smoother trajectory.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا