ترغب بنشر مسار تعليمي؟ اضغط هنا

Large-scale and High-speed Privacy Amplification for FPGA-based Quantum Key Distribution

69   0   0.0 ( 0 )
 نشر من قبل Qiong Li
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The FPGA-based Quantum key distribution (QKD) system is an important trend of QKD systems. It has several advantages, real time, low power consumption and high integration density. Privacy amplification is an essential part in a QKD system to ensure the security of QKD. Existing FPGA-based privacy amplification schemes have an disadvantage, that the throughput and the input size of these schemes (the best scheme 116Mbps@10^6) are much lower than these on other platforms (the best scheme 1Gbps@10^8). This paper designs a new PA scheme for FPGA-based QKD with multilinear modular hash-modular arithmetic hash (MMH-MH) PA and number theoretical transform (NTT) algorithm. The new PA scheme, named large-scale and high-speed (LSHS) PA scheme, designs a multiplication-reusable architecture and three key units to improve the performance. This scheme improves the input size and throughput of PA by above an order of magnitude. The throughput and input size of this scheme (1Gbps@10^8) is at a comparable level with these on other platforms.



قيم البحث

اقرأ أيضاً

Privacy amplification (PA) is the art of distilling a highly secret key from a partially secure string by public discussion. It is a vital procedure in quantum key distribution (QKD) to produce a theoretically unconditional secure key. The throughput of PA has become a bottleneck of the high-speed discrete variable QKD (DV-QKD) system. In this paper, a high-speed modular arithmetic hash PA scheme with GNU multiple precision (GMP) arithmetic library is presented. This scheme is implemented on two different central processing unit (CPU) platforms. The experimental results demon-strate that the throughput of this scheme achieves 260Mbps on the block size of 10^6 and 140Mbps on the block size of 10^8. This is the highest-speed recorded PA scheme on CPU platform to the authors knowledge.
Privacy amplification (PA) is an essential part in a quantum key distribution (QKD) system, distilling a highly secure key from a partially secure string by public negotiation between two parties. The optimization objectives of privacy amplification for QKD are large block size, high throughput and low cost. For the global optimization of these objectives, a novel privacy amplification algorithm is proposed in this paper by combining multilinear-modular-hashing and modular arithmetic hashing. This paper proves the security of this hybrid hashing PA algorithm within the framework of both information theory and composition security theory. A scheme based on this algorithm is implemented and evaluated on a CPU platform. The results on a typical CV-QKD system indicate that the throughput of this scheme ([email protected]*10^8 input block size) is twice higher than the best existing scheme (140Mbps@1*10^8 input block size). Moreover, This scheme is implemented on a mobile CPU platform instead of a desktop CPU or a server CPU, which means that this algorithm has a better performance with a much lower cost and power consumption.
Recent advances in quantum key distribution (QKD) have given rise to systems that operate at transmission periods significantly shorter than the dead times of their component single-photon detectors. As systems continue to increase in transmission ra te, security concerns associated with detector dead times can limit the production rate of sifted bits. We present a model of high-speed QKD in this limit that identifies an optimum transmission rate for a system with given link loss and detector response characteristics.
We study information theoretical security for space links between a satellite and a ground-station. Quantum key distribution (QKD) is a well established method for information theoretical secure communication, giving the eavesdropper unlimited access to the channel and technological resources only limited by the laws of quantum physics. But QKD for space links is extremely challenging, the achieved key rates are extremely low, and day-time operating impossible. However, eavesdropping on a channel in free-space without being noticed seems complicated, given the constraints imposed by orbital mechanics. If we also exclude eavesdroppers presence in a given area around the emitter and receiver, we can guarantee that he has only access to a fraction of the optical signal. In this setting, quantum keyless private (direct) communication based on the wiretap channel model is a valid alternative to provide information theoretical security. Like for QKD, we assume the legitimate users to be limited by state-of-the-art technology, while the potential eavesdropper is only limited by physical laws: physical measurement (Helstrom detector) and quantum electrodynamics (Holevo bound). Nevertheless, we demonstrate information theoretical secure communication rates (positive keyless private capacity) over a classical-quantum wiretap channel using on-off-keying of coherent states. We present numerical results for a setting equivalent to the recent experiments with the Micius satellite and compare them to the fundamental limit for the secret key rate of QKD. We obtain much higher rates compared with QKD with exclusion area of less than 13 meters for Low Earth Orbit (LEO) satellites. Moreover, we show that the wiretap channel quantum keyless privacy is much less sensitive to noise and signal dynamics and daytime operation is possible.
In device-independent quantum key distribution (DIQKD), the violation of a Bell inequality is exploited to establish a shared key that is secure independently of the internal workings of the QKD devices. An experimental implementation of DIQKD, howev er, is still awaited, since hitherto all optical Bell tests are subject to the detection loophole, making the protocol unsecured. In particular, photon losses in the quantum channel represent a fundamental limitation for DIQKD. Here, we introduce a heralded qubit amplifier based on single-photon sources and linear optics that provides a realistic solution to overcome the problem of channel losses in Bell tests.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا