ﻻ يوجد ملخص باللغة العربية
The FPGA-based Quantum key distribution (QKD) system is an important trend of QKD systems. It has several advantages, real time, low power consumption and high integration density. Privacy amplification is an essential part in a QKD system to ensure the security of QKD. Existing FPGA-based privacy amplification schemes have an disadvantage, that the throughput and the input size of these schemes (the best scheme 116Mbps@10^6) are much lower than these on other platforms (the best scheme 1Gbps@10^8). This paper designs a new PA scheme for FPGA-based QKD with multilinear modular hash-modular arithmetic hash (MMH-MH) PA and number theoretical transform (NTT) algorithm. The new PA scheme, named large-scale and high-speed (LSHS) PA scheme, designs a multiplication-reusable architecture and three key units to improve the performance. This scheme improves the input size and throughput of PA by above an order of magnitude. The throughput and input size of this scheme (1Gbps@10^8) is at a comparable level with these on other platforms.
Privacy amplification (PA) is the art of distilling a highly secret key from a partially secure string by public discussion. It is a vital procedure in quantum key distribution (QKD) to produce a theoretically unconditional secure key. The throughput
Privacy amplification (PA) is an essential part in a quantum key distribution (QKD) system, distilling a highly secure key from a partially secure string by public negotiation between two parties. The optimization objectives of privacy amplification
Recent advances in quantum key distribution (QKD) have given rise to systems that operate at transmission periods significantly shorter than the dead times of their component single-photon detectors. As systems continue to increase in transmission ra
We study information theoretical security for space links between a satellite and a ground-station. Quantum key distribution (QKD) is a well established method for information theoretical secure communication, giving the eavesdropper unlimited access
In device-independent quantum key distribution (DIQKD), the violation of a Bell inequality is exploited to establish a shared key that is secure independently of the internal workings of the QKD devices. An experimental implementation of DIQKD, howev