ﻻ يوجد ملخص باللغة العربية
We report on slow phase variations of the response of the space-ground radio interferometer RadioAstron during observations of pulsar B0329+54. The phase variations are due to the ionosphere and clearly distinguishable from effects of interstellar scintillation. Observations were made in a frequency range of 316-332~MHz with the 110-m Green Bank Telescope and the 10-m RadioAstron telescope in 1-hour sessions on 2012 November 26, 27, 28, and 29 with progressively increasing baseline projections of about 60, 90, 180, and 240 thousand kilometres. Quasi-periodic phase variations of interferometric scintles were detected in two observing sessions with characteristic time-scales of 12 and 10 minutes and amplitudes of up to 6.9~radians. We attribute the variations to the influence of medium-scale Travelling Ionospheric Disturbances. The measured amplitude corresponds to variations in vertical total electron content in ionosphere of about $0.1times10^{16}, mathrm{m}^{-2}$. Such variations would noticeably constrain the coherent integration time in VLBI studies of compact radio sources at low frequencies.
RadioAstron space-ground VLBI observations of the pulsar B0950+08, conducted with the 10-m space radio telescope in conjunction with the Arecibo 300-m telescope and Westerbork Synthesis Radio Telescope at a frequency of 324 MHz, were analyzed in orde
The radio galaxy 3C84 is a representative of gamma-ray-bright misaligned active galactic nuclei (AGN) and one of the best laboratories to study the radio properties of subparsec scale jets. We discuss here the past and present activity of the nuclear
Detailed studies of relativistic jets in active galactic nuclei (AGN) require high-fidelity imaging at the highest possible resolution. This can be achieved using very long baseline interferometry (VLBI) at radio frequencies, combining worldwide (glo
RadioAstron is a Russian space based radio telescope with a ten meter dish in a highly elliptical orbit with an eight to nine day period. RadioAstron works together with Earth based radio telescopes to give interferometer baselines extending up to 35
Polarization of radio emission in extragalactic jets at a sub-milliarcsecond angular resolution holds important clues for understanding the structure of the magnetic field in the inner regions of the jets and in close vicinity of the supermassive bla