ﻻ يوجد ملخص باللغة العربية
Molecular clouds have complex density structures produced by processes including turbulence and gravity. We propose a triangulation-based method to dissect the density structure of a molecular cloud and study the interactions between dense cores and their environments. In our {approach}, a Delaunay triangulation is constructed, which consists of edges connecting these cores. Starting from this construction, we study the physical connections between neighboring dense cores and the ambient environment in a systematic fashion. We apply our method to the Cygnus-X massive GMC complex and find that the core separation is related to the mean surface density by $Sigma_{rm edge} propto l_{rm core }^{-0.28 }$, which can be explained by {fragmentation controlled by a scale-dependent turbulent pressure (where the pressure is a function of scale, e.g. $psim l^{2/3}$)}. We also find that the masses of low-mass cores ($M_{rm core} < 10, M_{odot}$) are determined by fragmentation, whereas massive cores ($M_{rm core} > 10, M_{odot}$) grow mostly through accretion. The transition from fragmentation to accretion coincides with the transition from a log-normal core mass function (CMF) to a power-law CMF. By constructing surface density profiles measured along edges that connect neighboring cores, we find evidence that the massive cores have accreted a significant fraction of gas from their surroundings and thus depleted the gas reservoir. Our analysis reveals a picture where cores form through fragmentation controlled by scale-dependent turbulent pressure support, followed by accretion onto the massive cores, {and the method can be applied to different regions to achieve deeper understandings in the future.
We present Plateau de Bure interferometer observations obtained in continuum at 1.3 and 3.5 mm towards the six most massive and young (IR-quiet) dense cores in Cygnus X. Located at only 1.7 kpc, the Cygnus X region offers the opportunity of reaching
Similar to their low-mass counterparts, massive stars likely form via the collapse of pre-stellar molecular cores. Recent observations suggest that most massive cores are subvirial (i.e., not supported by turbulence) and therefore are likely unstable
The Cygnus region, which dominates the local spiral arm of the Galaxy, is one of the nearest complexes of massive star formation. Its massive stellar content, regions of ongoing star formation, and molecular gas have been studied in detail. However,
We attempt to make a complete census of massive-star formation within all of GMC G345.5+1.0. This cloud is located one degree above the galactic plane and at 1.8 kpc from the Sun, thus there is little superposition of dust along the line-of-sight, mi
Supermassive stars (SMSs) with $sim10^{4-5}~mathrm{M}_{odot}$ are candidate objects for the origin of supermassive black holes observed at redshift $z$>6. They are supposed to form in primordial-gas clouds that provide the central stars with gas at a