ﻻ يوجد ملخص باللغة العربية
The LHC may produce light, weakly-interacting particles that decay to dark matter, creating an intense and highly collimated beam of dark matter particles in the far-forward direction. We investigate the prospects for detecting this dark matter in two far-forward detectors proposed for a future Forward Physics Facility: FASER$ u$2, a 10-tonne emulsion detector, and FLArE, a 10- to 100-tonne LArTPC. We focus here on nuclear scattering, including elastic scattering, resonant pion production, and deep inelastic scattering, and devise cuts that efficiently remove the neutrino-induced background. In the invisibly-decaying dark photon scenario, DM-nuclear scattering probes new parameter space for dark matter masses 5 MeV $lesssim m_{chi} lesssim$ 500 MeV. When combined with the DM-electron scattering studied previously, FASER$ u$2 and FLArE will be able to discover dark matter in a large swath of the cosmologically-favored parameter space with MeV $lesssim m_{chi} lesssim $ GeV.
We systematically study models with light scalar and pseudoscalar dark matter candidates and their potential signals at the LHC. First, we derive cosmological bounds on models with the Standard Model Higgs mediator and with a new weak-scale mediator.
Supernovae can produce vast fluxes of new particles with masses on the MeV scale, a mass scale of interest for models of light dark matter. When these new particles become diffusively trapped within the supernova, the escaping flux will emerge semire
Recently the TOTEM experiment at the LHC has released measurements at $sqrt{s} = 13$ TeV of the proton-proton total cross section, $sigma_{tot}$, and the ratio of the real to imaginary parts of the forward elastic amplitude, $rho$. Since then an inte
Coherent elastic neutrino- and WIMP-nucleus interaction signatures are expected to be quite similar. This paper discusses how a next generation ton-scale dark matter detector could discover neutrino-nucleus coherent scattering, a precisely-predicted
We study infrared contributions to semihard parton-parton interactions by considering an effective charge whose finite infrared behavior is constrained by a dynamical mass scale. Using an eikonal QCD-based model in order to connect this semihard part