ﻻ يوجد ملخص باللغة العربية
We present maps revealing the expected information content of cosmic large-scale structures concerning cosmological physics. These maps can guide the optimal retrieval of relevant physical information with targeted cosmological searches. This approach has become feasible through the recent development of causal inference machinery that is informed on the physics of cosmic structure formation. Specifically, we measure the response of observed cosmic structures to perturbative changes in the cosmological model and chart their respective contributions to the Fisher information. Our physical forward modeling machinery transcends the limitations of contemporary analyses based on statistical summaries to yield detailed characterizations of individual 3D structures. We showcase the potential of our approach by studying the information content of the Coma cluster. We find that regions in the vicinity of the filaments and cluster core, where mass accretion ensues from gravitational infall, are the most informative. The results presented in this work are the first of their kind and elucidate the inhomogeneous distribution of cosmological information in the Universe. This study paves a new way forward to perform efficient targeted searches for the fundamental physics of the Universe, where search strategies are progressively refined with new cosmological data sets within an active learning framework.
N-body simulations are essential for understanding the formation and evolution of structure in the Universe. However, the discrete nature of these simulations affects their accuracy when modelling collisionless systems. We introduce a new approach to
We present a machine-learning photometric redshift analysis of the Kilo-Degree Survey Data Release 3, using two neural-network based techniques: ANNz2 and MLPQNA. Despite limited coverage of spectroscopic training sets, these ML codes provide photo-z
The angular momentum of dark matter haloes controls their spin magnitude and orientation, which in turn influences the galaxies therein. However, the process by which dark matter haloes acquire angular momentum is not fully understood; in particular,
The tightest and most robust cosmological results of the next decade will be achieved by bringing together multiple surveys of the Universe. This endeavor has to happen across multiple layers of the data processing and analysis, e.g., enhancements ar
We present the Cosmology and Astrophysics with MachinE Learning Simulations --CAMELS-- project. CAMELS is a suite of 4,233 cosmological simulations of $(25~h^{-1}{rm Mpc})^3$ volume each: 2,184 state-of-the-art (magneto-)hydrodynamic simulations run