ترغب بنشر مسار تعليمي؟ اضغط هنا

Amendment of the numerical dispersion in particle-in-cell methods for evaluation of charges of self-injected electron bunches in the laser wakefield acceleration

106   0   0.0 ( 0 )
 نشر من قبل Naveen Pathak
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Total charge and energy evaluations for the electron beams generated in the laser wakefield acceleration (LWFA) is the primary step in the determination of the required target and laser parameters. Particle-in-cell (PIC) simulations is an efficient numerical tool that can provide such evaluations unless the effect of numerical dispersion is not diminished. The numerical dispersion, which is specific for the PIC modeling, affects not only the dephasing lengths in LWFA but also the total amount of the self-injected electrons. A numerical error of the order of $10^{-4}-10^{-3}$ in the calculation of the speed of light results in a significant error in the total injected charge and energy gain of the accelerated electron bunches. In the standard numerical approach, the numerical correction of the speed of light either requires infinitely small spatial grid resolution (which needs large computation platform) or force to compromise with the numerical accuracy. A simple and easy to implement numerical scheme is shown to suppress the numerical dispersion of the electromagnetic pulse in PIC simulations even with a modest spatial resolution, and without any special treatments to the core structure of the numerical algorithm. Evaluated charges of the self-injected electron bunches become essentially lower owing to the better calculations of the wake phase velocity.



قيم البحث

اقرأ أيضاً

103 - M. Kando , Y. Fukuda , H. Kotaki 2006
We suggest a novel method for injection of electrons into the acceleration phase of particle accelerators, producing low emittance beams appropriate even for the demanding high energy Linear Collider specifications. In this paper we work out the inje ction into the acceleration phase of the wake field in a plasma behind a high intensity laser pulse, taking advantage of the laser polarization and focusing. With the aid of catastrophe theory we categorize the injection dynamics. The scheme uses the structurally stable regime of transverse wake wave breaking, when electron trajectory self-intersection leads to the formation of a flat electron bunch. As shown in three-dimensional particle-in-cell simulations of the interaction of a laser pulse in a line-focus with an underdense plasma, the electrons, injected via the transverse wake wave breaking and accelerated by the wake wave, perform betatron oscillations with different amplitudes and frequencies along the two transverse coordinates. The polarization and focusing geometry lead to a way to produce relativistic electron bunches with asymmetric emittance (flat beam). An approach for generating flat laser accelerated ion beams is briefly discussed.
Though wakefield acceleration in crystal channels has been previously proposed, x-ray wakefield acceleration has only recently become a realistic possibility since the invention of the single-cycled optical laser compression technique. We investigate the acceleration due to a wakefield induced by a coherent, ultrashort x-ray pulse guided by a nanoscale channel inside a solid material. By two-dimensional particle in- cell computer simulations, we show that an acceleration gradient of TeV/cm is attainable. This is about 3 orders of magnitude stronger than that of the conventional plasma-based wakefield accelerations, which implies the possibility of an extremely compact scheme to attain ultrahigh energies. In addition to particle acceleration, this scheme can also induce the emission of high energy photons at ~O(10-100) MeV. Our simulations confirm such high energy photon emissions, which is in contrast with that induced by the optical laser driven wakefield scheme. In addition to this, the significantly improved emittance of the energetic electrons has been discussed.
Dynamics of self-injected electron bunches has been numerically simulated in blowout regime at self-consistent change of electron bunch acceleration by plasma wakefield, excited by a laser pulse, to additional their acceleration by wakefield, excited by self-injected bunch. Advantages of acceleration by pulse train and bunch self-cleaning have been considered.
Particle in Cell (PIC) simulations are a widely used tool for the investigation of both laser- and beam-driven plasma acceleration. It is a known issue that the beam quality can be artificially degraded by numerical Cherenkov radiation (NCR) resultin g primarily from an incorrectly modeled dispersion relation. Pseudo-spectral solvers featuring infinite order stencils can strongly reduce NCR, or even suppress it, and are therefore well suited to correctly model the beam properties. For efficient parallelization of the PIC algorithm, however, localized solvers are inevitable. Arbitrary order pseudo-spectral methods provide this needed locality. Yet, these methods can again be prone to NCR. Here, we show that acceptably low solver orders are sufficient to correctly model the physics of interest, while allowing for parallel computation by domain decomposition.
77 - N. Pathak , A. Zhidkov , Y. Sakai 2019
The multi-stage technique for laser driven acceleration of electrons become a critical part of full-optical, jitter-free accelerators. Use of several independent laser drivers and shorter length plasma targets allows the stable and reproducible accel eration of electron bunches (or beam) in the GeV energies with lower energy spreads. At the same time the charge coupling, necessary for efficient acceleration in the consecutive acceleration stage(s), depends collectively on the parameters of the injected electron beam, the booster stage, and the non-linear transverse dynamics of the electron beam in the laser pulse wake. An unmatched electron beam injected in the booster stage(s), and its non-linear transverse evolution may result in perturbation and even reduction of the field strength in the acceleration phase of the wakefield. Analysis and characterization of charge coupling in multi-stage laser wakefield acceleration (LWFA) become ultimately important. Here, we investigate two-stage LWFA via fully relativistic multi-dimensional particle-in-cell simulations, and underlying the most critical parameters, which affect the efficient coupling and acceleration of the electron beam in the booster stage.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا