ترغب بنشر مسار تعليمي؟ اضغط هنا

AutoSF+: Towards Automatic Scoring Function Design for Knowledge Graph Embedding

146   0   0.0 ( 0 )
 نشر من قبل Yongqi Zhang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Scoring functions, which measure the plausibility of triples, have become the crux of knowledge graph embedding (KGE). Plenty of scoring functions, targeting at capturing different kinds of relations in KGs, have been designed by experts in recent years. However, as relations can exhibit intricate patterns that are hard to infer before training, none of them can consistently perform the best on existing benchmark tasks. AutoSF has shown the significance of using automated machine learning (AutoML) to design KG- dependent scoring functions. In this paper, we propose AutoSF+ as an extension of AutoSF. First, we improve the search algorithm with the evolutionary search, which can better explore the search space. Second, we evaluate AutoSF+ on the recently developed benchmark OGB. Besides, we apply AutoSF+ to the new task, i.e., entity classification, to show that it can improve the task beyond KG completion.



قيم البحث

اقرأ أيضاً

Scoring functions (SFs), which measure the plausibility of triplets in knowledge graph (KG), have become the crux of KG embedding. Lots of SFs, which target at capturing different kinds of relations in KGs, have been designed by humans in recent year s. However, as relations can exhibit complex patterns that are hard to infer before training, none of them can consistently perform better than others on existing benchmark data sets. In this paper, inspired by the recent success of automated machine learning (AutoML), we propose to automatically design SFs (AutoSF) for distinct KGs by the AutoML techniques. However, it is non-trivial to explore domain-specific information here to make AutoSF efficient and effective. We firstly identify a unified representation over popularly used SFs, which helps to set up a search space for AutoSF. Then, we propose a greedy algorithm to search in such a space efficiently. The algorithm is further sped up by a filter and a predictor, which can avoid repeatedly training SFs with same expressive ability and help removing bad candidates during the search before model training. Finally, we perform extensive experiments on benchmark data sets. Results on link prediction and triplets classification show that the searched SFs by AutoSF, are KG dependent, new to the literature, and outperform the state-of-the-art SFs designed by humans.
The scoring function, which measures the plausibility of triplets in knowledge graphs (KGs), is the key to ensure the excellent performance of KG embedding, and its design is also an important problem in the literature. Automated machine learning (Au toML) techniques have recently been introduced into KG to design task-aware scoring functions, which achieve state-of-the-art performance in KG embedding. However, the effectiveness of searched scoring functions is still not as good as desired. In this paper, observing that existing scoring functions can exhibit distinct performance on different semantic patterns, we are motivated to explore such semantics by searching relation-aware scoring functions. But the relation-aware search requires a much larger search space than the previous one. Hence, we propose to encode the space as a supernet and propose an efficient alternative minimization algorithm to search through the supernet in a one-shot manner. Finally, experimental results on benchmark datasets demonstrate that the proposed method can efficiently search relation-aware scoring functions, and achieve better embedding performance than state-of-the-art methods.
Embedding entities and relations into a continuous multi-dimensional vector space have become the dominant method for knowledge graph embedding in representation learning. However, most existing models ignore to represent hierarchical knowledge, such as the similarities and dissimilarities of entities in one domain. We proposed to learn a Domain Representations over existing knowledge graph embedding models, such that entities that have similar attributes are organized into the same domain. Such hierarchical knowledge of domains can give further evidence in link prediction. Experimental results show that domain embeddings give a significant improvement over the most recent state-of-art baseline knowledge graph embedding models.
Knowledge graph embedding, which projects symbolic entities and relations into continuous vector spaces, is gaining increasing attention. Previous methods allow a single static embedding for each entity or relation, ignoring their intrinsic contextua l nature, i.e., entities and relations may appear in different graph contexts, and accordingly, exhibit different properties. This work presents Contextualized Knowledge Graph Embedding (CoKE), a novel paradigm that takes into account such contextual nature, and learns dynamic, flexible, and fully contextualized entity and relation embeddings. Two types of graph contexts are studied: edges and paths, both formulated as sequences of entities and relations. CoKE takes a sequence as input and uses a Transformer encoder to obtain contextualized representations. These representations are hence naturally adaptive to the input, capturing contextual meanings of entities and relations therein. Evaluation on a wide variety of public benchmarks verifies the superiority of CoKE in link prediction and path query answering. It performs consistently better than, or at least equally well as current state-of-the-art in almost every case, in particular offering an absolute improvement of 21.0% in H@10 on path query answering. Our code is available at url{https://github.com/PaddlePaddle/Research/tree/master/KG/CoKE}.
We study the problem of embedding-based entity alignment between knowledge graphs (KGs). Previous works mainly focus on the relational structure of entities. Some further incorporate another type of features, such as attributes, for refinement. Howev er, a vast of entity features are still unexplored or not equally treated together, which impairs the accuracy and robustness of embedding-based entity alignment. In this paper, we propose a novel framework that unifies multiple views of entities to learn embeddings for entity alignment. Specifically, we embed entities based on the views of entity names, relations and attributes, with several combination strategies. Furthermore, we design some cross-KG inference methods to enhance the alignment between two KGs. Our experiments on real-world datasets show that the proposed framework significantly outperforms the state-of-the-art embedding-based entity alignment methods. The selected views, cross-KG inference and combination strategies all contribute to the performance improvement.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا