ﻻ يوجد ملخص باللغة العربية
An important step for any causal inference study design is understanding the distribution of the treated and control subjects in terms of measured baseline covariates. However, not all baseline variation is equally important. In the observational context, balancing on baseline variation summarized in a propensity score can help reduce bias due to self-selection. In both observational and experimental studies, controlling baseline variation associated with the expected outcomes can help increase the precision of causal effect estimates. We propose a set of visualizations which decompose the space of measured covariates into the different types of baseline variation important to the study design. These ``assignment-control plots and variations thereof visually illustrate core concepts of causal inference and suggest new directions for methodological research on study design. As a practical demonstration, we illustrate one application of assignment-control plots to a study of cardiothoracic surgery. While the family of visualization tools for studies of causality is relatively sparse, simple visual tools can be an asset to education, application, and methods development.
Marginal structural models (MSM) with inverse probability weighting (IPW) are used to estimate causal effects of time-varying treatments, but can result in erratic finite-sample performance when there is low overlap in covariate distributions across
Propensity score methods have been shown to be powerful in obtaining efficient estimators of average treatment effect (ATE) from observational data, especially under the existence of confounding factors. When estimating, deciding which type of covari
In a comprehensive cohort study of two competing treatments (say, A and B), clinically eligible individuals are first asked to enroll in a randomized trial and, if they refuse, are then asked to enroll in a parallel observational study in which they
The goal of causal inference is to understand the outcome of alternative courses of action. However, all causal inference requires assumptions. Such assumptions can be more influential than in typical tasks for probabilistic modeling, and testing tho
Weighting methods are a common tool to de-bias estimates of causal effects. And though there are an increasing number of seemingly disparate methods, many of them can be folded into one unifying regime: causal optimal transport. This new method direc