ﻻ يوجد ملخص باللغة العربية
Probabilistic model checking aims to prove whether a Markov decision process (MDP) satisfies a temporal logic specification. The underlying methods rely on an often unrealistic assumption that the MDP is precisely known. Consequently, parametric MDPs (pMDPs) extend MDPs with transition probabilities that are functions over unspecified parameters. The parameter synthesis problem is to compute an instantiation of these unspecified parameters such that the resulting MDP satisfies the temporal logic specification. We formulate the parameter synthesis problem as a quadratically constrained quadratic program (QCQP), which is nonconvex and is NP-hard to solve in general. We develop two approaches that iteratively obtain locally optimal solutions. The first approach exploits the so-called convex-concave procedure (CCP), and the second approach utilizes a sequential convex programming (SCP) method. The techniques improve the runtime and scalability by multiple orders of magnitude compared to black-box CCP and SCP by merging ideas from convex optimization and probabilistic model checking. We demonstrate the approaches on a satellite collision avoidance problem with hundreds of thousands of states and tens of thousands of parameters and their scalability on a wide range of commonly used benchmarks.
We study the problem of policy synthesis for uncertain partially observable Markov decision processes (uPOMDPs). The transition probability function of uPOMDPs is only known to belong to a so-called uncertainty set, for instance in the form of probab
We study the robustness of accelerated first-order algorithms to stochastic uncertainties in gradient evaluation. Specifically, for unconstrained, smooth, strongly convex optimization problems, we examine the mean-squared error in the optimization va
This paper considers the problem of designing accelerated gradient-based algorithms for optimization and saddle-point problems. The class of objective functions is defined by a generalized sector condition. This class of functions contains strongly c
We propose an accelerated meta-algorithm, which allows to obtain accelerated methods for convex unconstrained minimization in different settings. As an application of the general scheme we propose nearly optimal methods for minimizing smooth function
This work introduces a second-order differential inclusion for unconstrained convex optimization. In continuous level, solution existence in proper sense is obtained and exponential decay of a novel Lyapunov function along with the solution trajector