ﻻ يوجد ملخص باللغة العربية
In multivariate data analysis, it is often important to estimate a graph characterizing dependence among (p) variables. A popular strategy uses the non-zero entries in a (ptimes p) covariance or precision matrix, typically requiring restrictive modeling assumptions for accurate graph recovery. To improve model robustness, we instead focus on estimating the {em backbone} of the dependence graph. We use a spanning tree likelihood, based on a minimalist graphical model that is purposely overly-simplified. Taking a Bayesian approach, we place a prior on the space of trees and quantify uncertainty in the graphical model. In both theory and experiments, we show that this model does not require the population graph to be a spanning tree or the covariance to satisfy assumptions beyond positive-definiteness. The model accurately recovers the backbone of the population graph at a rate competitive with existing approaches but with better robustness. We show combinatorial properties of the spanning tree, which may be of independent interest, and develop an efficient Gibbs sampler for Bayesian inference. Analyzing electroencephalography data using a Hidden Markov Model with each latent state modeled by a spanning tree, we show that results are much more interpretable compared with popular alternatives.
We present new short proofs of known spanning tree enumeration formulae for threshold and Ferrers graphs by showing that the Laplacian matrices of such graphs admit triangular rank-one perturbations. We then characterize the set of graphs whose Lapla
Bayesian methods - either based on Bayes Factors or BIC - are now widely used for model selection. One property that might reasonably be demanded of any model selection method is that if a model ${M}_{1}$ is preferred to a model ${M}_{0}$, when these
In applied multivariate statistics, estimating the number of latent dimensions or the number of clusters is a fundamental and recurring problem. One common diagnostic is the scree plot, which shows the largest eigenvalues of the data matrix; the user
Bayesian quadrature (BQ) is a method for solving numerical integration problems in a Bayesian manner, which allows users to quantify their uncertainty about the solution. The standard approach to BQ is based on a Gaussian process (GP) approximation o
Estimation of the long-term health effects of air pollution is a challenging task, especially when modelling small-area disease incidence data in an ecological study design. The challenge comes from the unobserved underlying spatial correlation struc