ﻻ يوجد ملخص باللغة العربية
We consider a Dirichlet problem driven by the anisotropic $(p,q)$-Laplacian and a reaction with gradient dependence (convection). The presence of the gradient in the source term excludes from consideration a variational approach in dealing with the qualitative analysis of this problem with unbalanced growth. Using the frozen variable method and eventually a fixed point theorem, the main result of this paper establishes that the problem has a positive smooth solution.
In this paper we consider a Dirichlet problem driven by an anisotropic $(p,q)$-differential operator and a parametric reaction having the competing effects of a singular term and of a superlinear perturbation. We prove a bifurcation-type theorem desc
We carry out the enhanced group classification of a class of (1+1)-dimensional nonlinear diffusion-reaction equations with gradient-dependent diffusivity using the two-step version of the method of furcate splitting. For simultaneously finding the eq
We consider a nonlinear Dirichlet problem driven by the $(p,q)$-Laplacian and with a reaction which is parametric and exhibits the combined effects of a singular term and of a superdiffusive one. We prove an existence and nonexistence result for posi
We introduce Fundamental solutions of Barenblatt type for the equation $u_t=sum_{i=1}^N bigg( |u_{x_i}|^{p_i-2}u_{x_i} bigg)_{x_i}$, $p_i >2 quad forall i=1,..,N$, on $Sigma_T=mathbb{R}^N times[0,T]$, and we prove their importance for the regularity properties of the solutions.
Given $n geq 2$ and $1<p<n$, we consider the critical $p$-Laplacian equation $Delta_p u + u^{p^*-1}=0$, which corresponds to critical points of the Sobolev inequality. Exploiting the moving planes method, it has been recently shown that positive solu