ﻻ يوجد ملخص باللغة العربية
Machine learning algorithms with empirical risk minimization are vulnerable under distributional shifts due to the greedy adoption of all the correlations found in training data. There is an emerging literature on tackling this problem by minimizing the worst-case risk over an uncertainty set. However, existing methods mostly construct ambiguity sets by treating all variables equally regardless of the stability of their correlations with the target, resulting in the overwhelmingly-large uncertainty set and low confidence of the learner. In this paper, we propose a novel Stable Adversarial Learning (SAL) algorithm that leverages heterogeneous data sources to construct a more practical uncertainty set and conduct differentiated robustness optimization, where covariates are differentiated according to the stability of their correlations with the target. We theoretically show that our method is tractable for stochastic gradient-based optimization and provide the performance guarantees for our method. Empirical studies on both simulation and real datasets validate the effectiveness of our method in terms of uniformly good performance across unknown distributional shifts.
We introduce a sampling perspective to tackle the challenging task of training robust Reinforcement Learning (RL) agents. Leveraging the powerful Stochastic Gradient Langevin Dynamics, we present a novel, scalable two-player RL algorithm, which is a
Adversarial training (AT) is among the most effective techniques to improve model robustness by augmenting training data with adversarial examples. However, most existing AT methods adopt a specific attack to craft adversarial examples, leading to th
Our goal is to train control policies that generalize well to unseen environments. Inspired by the Distributionally Robust Optimization (DRO) framework, we propose DRAGEN - Distributionally Robust policy learning via Adversarial Generation of ENviron
Despite the empirical success of using Adversarial Training to defend deep learning models against adversarial perturbations, so far, it still remains rather unclear what the principles are behind the existence of adversarial perturbations, and what
Distributionally robust supervised learning (DRSL) is emerging as a key paradigm for building reliable machine learning systems for real-world applications -- reflecting the need for classifiers and predictive models that are robust to the distributi