ﻻ يوجد ملخص باللغة العربية
This work reports on developing a deep learning-based contact estimator for legged robots that bypasses the need for physical contact sensors and takes multi-modal proprioceptive sensory data from joint encoders, kinematics, and an inertial measurement unit as input. Unlike vision-based state estimators, proprioceptive state estimators are agnostic to perceptually degraded situations such as dark or foggy scenes. For legged robots, reliable kinematics and contact data are necessary to develop a proprioceptive state estimator. While some robots are equipped with dedicated contact sensors or springs to detect contact, some robots do not have dedicated contact sensors, and the addition of such sensors is non-trivial without redesigning the hardware. The trained deep network can accurately estimate contacts on different terrains and robot gaits and is deployed along a contact-aided invariant extended Kalman filter to generate odometry trajectories. The filter performs comparably to a state-of-the-art visual SLAM system.
Legged robots have great potential to perform loco-manipulation tasks, yet it is challenging to keep the robot balanced while it interacts with the environment. In this paper we study the use of additional contact points for maximising the robustness
This review introduces quadruped robots: MITCheetah, HyQ, ANYmal, BigDog, and their mechanical structure, actuation, and control.
Designing agile locomotion for quadruped robots often requires extensive expertise and tedious manual tuning. In this paper, we present a system to automate this process by leveraging deep reinforcement learning techniques. Our system can learn quadr
Legged robots require knowledge of pose and velocity in order to maintain stability and execute walking paths. Current solutions either rely on vision data, which is susceptible to environmental and lighting conditions, or fusion of kinematic and con
Kinship verification is a long-standing research challenge in computer vision. The visual differences presented to the face have a significant effect on the recognition capabilities of the kinship systems. We argue that aggregating multiple visual kn