ترغب بنشر مسار تعليمي؟ اضغط هنا

Alzheimers Dementia Recognition Using Acoustic, Lexical, Disfluency and Speech Pause Features Robust to Noisy Inputs

91   0   0.0 ( 0 )
 نشر من قبل Morteza Rohanian
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We present two multimodal fusion-based deep learning models that consume ASR transcribed speech and acoustic data simultaneously to classify whether a speaker in a structured diagnostic task has Alzheimers Disease and to what degree, evaluating the ADReSSo challenge 2021 data. Our best model, a BiLSTM with highway layers using words, word probabilities, disfluency features, pause information, and a variety of acoustic features, achieves an accuracy of 84% and RSME error prediction of 4.26 on MMSE cognitive scores. While predicting cognitive decline is more challenging, our models show improvement using the multimodal approach and word probabilities, disfluency and pause information over word-only models. We show considerable gains for AD classification using multimodal fusion and gating, which can effectively deal with noisy inputs from acoustic features and ASR hypotheses.



قيم البحث

اقرأ أيضاً

This paper is a submission to the Alzheimers Dementia Recognition through Spontaneous Speech (ADReSS) challenge, which aims to develop methods that can assist in the automated prediction of severity of Alzheimers Disease from speech data. We focus on acoustic and natural language features for cognitive impairment detection in spontaneous speech in the context of Alzheimers Disease Diagnosis and the mini-mental state examination (MMSE) score prediction. We proposed a model that obtains unimodal decisions from different LSTMs, one for each modality of text and audio, and then combines them using a gating mechanism for the final prediction. We focused on sequential modelling of text and audio and investigated whether the disfluencies present in individuals speech relate to the extent of their cognitive impairment. Our results show that the proposed classification and regression schemes obtain very promising results on both development and test sets. This suggests Alzheimers Disease can be detected successfully with sequence modeling of the speech data of medical sessions.
End-to-end acoustic-to-word speech recognition models have recently gained popularity because they are easy to train, scale well to large amounts of training data, and do not require a lexicon. In addition, word models may also be easier to integrate with downstream tasks such as spoken language understanding, because inference (search) is much simplified compared to phoneme, character or any other sort of sub-word units. In this paper, we describe methods to construct contextual acoustic word embeddings directly from a supervised sequence-to-sequence acoustic-to-word speech recognition model using the learned attention distribution. On a suite of 16 standard sentence evaluation tasks, our embeddings show competitive performance against a word2vec model trained on the speech transcriptions. In addition, we evaluate these embeddings on a spoken language understanding task, and observe that our embeddings match the performance of text-based embeddings in a pipeline of first performing speech recognition and then constructing word embeddings from transcriptions.
On-device speech recognition requires training models of different sizes for deploying on devices with various computational budgets. When building such different models, we can benefit from training them jointly to take advantage of the knowledge sh ared between them. Joint training is also efficient since it reduces the redundancy in the training procedures data handling operations. We propose a method for collaboratively training acoustic encoders of different sizes for speech recognition. We use a sequence transducer setup where different acoustic encoders share a common predictor and joiner modules. The acoustic encoders are also trained using co-distillation through an auxiliary task for frame level chenone prediction, along with the transducer loss. We perform experiments using the LibriSpeech corpus and demonstrate that the collaboratively trained acoustic encoders can provide up to a 11% relative improvement in the word error rate on both the test partitions.
In this paper, we combined linguistic complexity and (dis)fluency features with pretrained language models for the task of Alzheimers disease detection of the 2021 ADReSSo (Alzheimers Dementia Recognition through Spontaneous Speech) challenge. An acc uracy of 83.1% was achieved on the test set, which amounts to an improvement of 4.23% over the baseline model. Our best-performing model that integrated component models using a stacking ensemble technique performed equally well on cross-validation and test data, indicating that it is robust against overfitting.
Multimodal learning allows us to leverage information from multiple sources (visual, acoustic and text), similar to our experience of the real world. However, it is currently unclear to what extent auxiliary modalities improve performance over unimod al models, and under what circumstances the auxiliary modalities are useful. We examine the utility of the auxiliary visual context in Multimodal Automatic Speech Recognition in adversarial settings, where we deprive the models from partial audio signal during inference time. Our experiments show that while MMASR models show significant gains over traditional speech-to-text architectures (upto 4.2% WER improvements), they do not incorporate visual information when the audio signal has been corrupted. This shows that current methods of integrating the visual modality do not improve model robustness to noise, and we need better visually grounded adaptation techniques.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا