ترغب بنشر مسار تعليمي؟ اضغط هنا

Distributed Matrix Tiling Using A Hypergraph Labeling Formulation

91   0   0.0 ( 0 )
 نشر من قبل Avah Banerjee
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Partitioning large matrices is an important problem in distributed linear algebra computing (used in ML among others). Briefly, our goal is to perform a sequence of matrix algebra operations in a distributed manner (whenever possible) on these large matrices. However, not all partitioning schemes work well with different matrix algebra operations and their implementations (algorithms). This is a type of data tiling problem. In this work we consider a theoretical model for a version of the matrix tiling problem in the setting of hypergraph labeling. We prove some hardness results and give a theoretical characterization of its complexity on random instances. Additionally we develop a greedy algorithm and experimentally show its efficacy.



قيم البحث

اقرأ أيضاً

While algebrisation constitutes a powerful technique in the design and analysis of centralised algorithms, to date there have been hardly any applications of algebraic techniques in the context of distributed graph algorithms. This work is a case stu dy that demonstrates the potential of algebrisation in the distributed context. We will focus on distributed graph algorithms in the congested clique model; the graph problems that we will consider include, e.g., the triangle detection problem and the all-pairs shortest path problem (APSP). There is plenty of prior work on combinatorial algorithms in the congested clique model: for example, Dolev et al. (DISC 2012) gave an algorithm for triangle detection with a running time of $tilde O(n^{1/3})$, and Nanongkai (STOC 2014) gave an approximation algorithm for APSP with a running time of $tilde O(n^{1/2})$. In this work, we will use algebraic techniques -- in particular, algorithms based on fast matrix multiplication -- to solve both triangle detection and the unweighted APSP in time $O(n^{0.15715})$; for weighted APSP, we give a $(1+o(1))$-approximation with this running time, as well as an exact $tilde O(n^{1/3})$ solution.
We present a complete classification of the deterministic distributed time complexity for a family of graph problems: binary labeling problems in trees. These are locally checkable problems that can be encoded with an alphabet of size two in the edge labeling formalism. Examples of binary labeling problems include sinkless orientation, sinkless and sourceless orientation, 2-vertex coloring, perfect matching, and the task of coloring edges red and blue such that all nodes are incident to at least one red and at least one blue edge. More generally, we can encode e.g. any cardinality constraints on indegrees and outdegrees. We study the deterministic time complexity of solving a given binary labeling problem in trees, in the usual LOCAL model of distributed computing. We show that the complexity of any such problem is in one of the following classes: $O(1)$, $Theta(log n)$, $Theta(n)$, or unsolvable. In particular, a problem that can be represented in the binary labeling formalism cannot have time complexity $Theta(log^* n)$, and hence we know that e.g. any encoding of maximal matchings has to use at least three labels (which is tight). Furthermore, given the description of any binary labeling problem, we can easily determine in which of the four classes it is and what is an asymptotically optimal algorithm for solving it. Hence the distributed time complexity of binary labeling problems is decidable, not only in principle, but also in practice: there is a simple and efficient algorithm that takes the description of a binary labeling problem and outputs its distributed time complexity.
We generalize the definition of Proof Labeling Schemes to reactive systems, that is, systems where the configuration is supposed to keep changing forever. As an example, we address the main classical test case of reactive tasks, namely, the task of t oken passing. Different RPLSs are given for the cases that the network is assumed to be a tree or an anonymous ring, or a general graph, and the sizes of RPLSs labels are analyzed. We also address the question of whether an RPLS exists. First, on the positive side, we show that there exists an RPLS for any distributed task for a family of graphs with unique identities. For the case of anonymous networks (even for the special case of rings), interestingly, it is known that no token passing algorithm is possible even if the number n of nodes is known. Nevertheless, we show that an RPLS is possible. On the negative side, we show that if one drops the assumption that n is known, then the construction becomes impossible.
Diameter, radius and eccentricities are fundamental graph parameters, which are extensively studied in various computational settings. Typically, computing approximate answers can be much more efficient compared with computing exact solutions. In thi s paper, we give a near complete characterization of the trade-offs between approximation ratios and round complexity of distributed algorithms for approximating these parameters, with a focus on the weighted and directed variants. Furthermore, we study emph{bi-chromatic} variants of these parameters defined on a graph whose vertices are colored either red or blue, and one focuses only on distances for pairs of vertices that are colored differently. Motivated by applications in computational geometry, bi-chromatic diameter, radius and eccentricities have been recently studied in the sequential setting [Backurs et al. STOC18, Dalirrooyfard et al. ICALP19]. We provide the first distributed upper and lower bounds for such problems. Our technical contributions include introducing the notion of emph{approximate pseudo-center}, which extends the emph{pseudo-centers} of [Choudhary and Gold SODA20], and presenting an efficient distributed algorithm for computing approximate pseudo-centers. On the lower bound side, our constructions introduce the usage of new functions into the framework of reductions from 2-party communication complexity to distributed algorithms.
We give a new, simple distributed algorithm for graph colouring in paths and cycles. Our algorithm is fast and self-contained, it does not need any globally consistent orientation, and it reduces the number of colours from $10^{100}$ to $3$ in three iterations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا