ﻻ يوجد ملخص باللغة العربية
Relative lifetimes of inherent double stranded DNA openings with lengths up to ten base pairs are presented for different gene promoters and corresponding mutants that either increase or decrease transcriptional activity, in the framework of the Peyrard-Bishop-Dauxois model. Extensive microcanonical simulations are used, with energies corresponding to physiological temperature. The bubble lifetime profiles along the DNA sequences demonstrate a significant reduction of the average lifetime at the mutation sites when the mutated promoter decreases transcription, while a corresponding enhancement of the bubble lifetime is observed in the case of mutations leading to increased transcription. The relative difference of bubble lifetimes between the mutated and the wild type promoters at the position of mutation varies from 20% to more than 30% as the bubble length is decreasing
We investigate the distribution of bubble lifetimes and bubble lengths in DNA at physiological temperature, by performing extensive molecular dynamics simulations with the Peyrard-Bishop-Dauxois (PBD) model, as well as an extended version (ePBD) havi
Much of the complexity observed in gene regulation originates from cooperative protein-DNA binding. While studies of the target search of proteins for their specific binding sites on the DNA have revealed design principles for the quantitative charac
Gene transcription is a stochastic process mostly occurring in bursts. Regulation of transcription arises from the interaction of transcription factors (TFs) with the promoter of the gene. The TFs, such as activators and repressors can interact with
There is growing appreciation that gene function is connected to the dynamic structure of the chromosome. Here we explore the interplay between three-dimensional structure and transcriptional activity at the single cell level. We show that inactive l
The effective DNA-DNA interaction force is calculated by computer simulations with explicit tetravalent counterions and monovalent salt. For overcharged DNA molecules, the interaction force shows a double-minimum structure. The positions and depths o