ﻻ يوجد ملخص باللغة العربية
The lowest-energy structure, distribution of isomers, and their molecular properties depend significantly on the geometry and temperature. The total energy computations under DFT methodology are typically carried out at zero temperature; thereby, entropic contributions to total energy are neglected, even though functional materials work at finite temperature. In the present study, the probability of occurrence of one particular Be$_4$B$_8$ isomer at temperature T is estimated within the framework of quantum statistical mechanics and nanothermodynamics. To locate a list of all possible low-energy chiral and achiral structures, an exhaustive and efficient exploration of the potential/free energy surface is done by employing a multilevel multistep global genetic algorithm search coupled to DFT. Moreover, we discuss the energetic ordering of structures computed at the DFT level against single-point energy calculations at the CCSD(T) level of theory. The computed VCD/IR spectrum of each isomer is multiplied by their corresponding Boltzmann weight at temperature T; then, they are summed together to produce a final Boltzmann weighted spectrum. Additionally, we present chemical bonding analysis using the Adaptive Natural Density Partitioning method in the chiral putative global minimum. The transition state structures and the enantiomer-enantiomer and enantiomer-achiral activation energies as a function of temperature, evidence that a change from an endergonic to an exergonic type of reaction occurs at a temperature of 739 K.
Interatomic potential models based on machine learning (ML) are rapidly developing as tools for materials simulations. However, because of their flexibility, they require large fitting databases that are normally created with substantial manual selec
The starting point to understanding cluster properties is the putative global minimum and all the nearby local energy minima; however, locating them is computationally expensive and challenging due to a combinatorial explosion problem. The relative p
This study reports the lowest energy structure of bare Cu$_{13}$ nanoclusters as a pair of enantiomers for temperatures ranging from 20 to 1200 K. Moreover, we compute the enantiomerization energy for the interconversion from $mathcal{M}$ to $mathcal
We show that the transition origins of electronic excitations identified by quantified natural transition orbital (QNTO) analysis can be employed to connect potential energy surfaces (PESs) according to their character across a widerange of molecular
The adsorption and dissociation of O$_{2}$ molecules at the Be(0001) surface is studied by using density-functional theory within the generalized gradient approximation and a supercell approach. The physi- and chemisorbed molecular precursor states a