ترغب بنشر مسار تعليمي؟ اضغط هنا

Tracing the magnetic field morphology of the LDN 1172/1174 cloud complex

124   0   0.0 ( 0 )
 نشر من قبل Piyali Saha
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The LDN 1172/1174 cloud complex in the Cepheus Flare region presents a hub-filament structure with the reflection nebula, NGC 7023, illuminated by a Herbig Be star, HD 200775, which consists of the hub with a $sim$5 pc long narrow filament attached to it. Formation of a sparse cluster of low- and intermediate-mass stars is presently taking place in the hub. The aim of this work is to map the magnetic field geometry of LDN 1172/1174 to understand the role played by the field lines in the formation of the molecular cloud. We made R-band polarization measurements of 249 stars projected on the entire LDN 1172/1174 cloud complex to map the geometry of the magnetic field of this region. The magnetic field geometry constructed from our R-band polarization measurements is found to be parallel to the elongated structure inferred from the column density distribution of the cloud produced using the Herschel images. Our R-band polarization measurements are found to be in good agreement with those obtained from Planck. There is evidence of a possible distortion of the magnetic fields toward the northwestern part of the cloud by HD 200775. The magnetic field strength is estimated as $sim$30 $mu$G. The estimated star formation rate (SFR)/mass of 2.0$pm$1.3 %Myr$^{-1}$ and 0.4$pm$0.3 %Myr$^{-1}$ for LDN 1172/1174 and the neighboring cloud complex, LDN 1147/1158, respectively, are found to be consistent with the mean SFR/mass found for the clouds with magnetic field orientations parallel and perpendicular to their elongated structures, respectively. These results support earlier findings that the clouds with magnetic field lines parallel to their long axes seem to have higher SFRs compared to those with the magnetic field orientation perpendicular to the cloud elongation.



قيم البحث

اقرأ أيضاً

130 - G.A.P. Franco , F.O. Alves 2015
Deep R-band CCD linear polarimetry collected for fields with lines-of-sight toward the Lupus I molecular cloud is used to investigate the properties of the magnetic field within this molecular cloud. The observed sample contains about 7000 stars, alm ost 2000 of them with polarization signal-to-noise ratio larger than 5. These data cover almost the entire main molecular cloud and also sample two diffuse infrared patches in the neighborhood of Lupus I. The large scale pattern of the plane-of-sky projection of the magnetic field is perpendicular to the main axis of Lupus I, but parallel to the two diffuse infrared patches. A detailed analysis of our polarization data combined with the Herschel/SPIRE 350 um dust emission map shows that the principal filament of Lupus I is constituted by three main clumps acted by magnetic fields having different large-scale structure properties. These differences may be the reason for the observed distribution of pre- and protostellar objects along the molecular cloud and its apparent evolutive stage. On the other hand, assuming that the magnetic field is composed by a large-scale and a turbulent components, we find that the latter is rather similar in all three clumps. The estimated plane-of-sky component of the large-scale magnetic field ranges from about 70 uG to 200 uG in these clumps. The intensity increases towards the Galactic plane. The mass-to-magnetic flux ratio is much smaller than unity, implying that Lupus I is magnetically supported on large scales.
LDN 1157, is one of the several clouds situated in the cloud complex, LDN 1147/1158, represents a coma-shaped morphology with a well-collimated bipolar outflow emanating from a Class 0 protostar, LDN 1157-mm. The main goals of this work are (a) to ma p the inter-cloud magnetic field (ICMF) geometry of the region surrounding LDN 1157 to investigate its relationship with the cloud morphology, with the outflow direction and with the core magnetic field (CMF) geometry inferred from the mm- and sub-mm polarization results from the literature, and (b) to investigate the kinematic structure of the cloud. We carried out R-band polarization observations of the stars projected on the cloud to map the pc-scale magnetic field geometry and made spectroscopic observations of the entire cloud in 12CO, C18O and N2H+ (J=1-0) lines to investigate its kinematic structure. We obtained a distance of 340$pm$3 pc to the LDN 1147/1158, complex based on the Gaia DR2 parallaxes and proper motion values of the three YSOs associated with the complex. A single filament of $sim1.2$ pc in length and $sim0.09$ pc in width is found to run all along the coma-shaped cloud. Based on the relationships between the ICMF, CMF, filament orientations, outflow direction, and the presence of an hour-glass morphology of the magnetic field, it is likely that the magnetic field had played an important role in the star formation process in LDN 1157. Combining the proper motions of the YSOs and the radial velocity of LDN 1147/1158 and another complex LDN 1172/1174 which is situated $sim2$dgr~east of it, we found that both the complexes are moving collectively toward the Galactic plane. The filamentary morphology of the east-west segment of LDN 1157 may have formed as a result of mass lost by ablation due to the interaction of the moving cloud with the ambient interstellar medium.
We report the discovery of a new emission-line object, named SPH4-South = (GAIA EDR3 5616553300192230272), towards the dark cloud LDN 1667. This object came to our attention after inspecting public images that show a faint diffuse nebula a few arcsec southern from SPH4, an emission-line object previously classified as a T Tauri star. We present high-resolution spectra and analyzed JHK photometry of SPH4 and SPH4-South, and new narrow-band and archival broad-band images of these objects. A comparison of the spectra of SPH4 and SPH4-South with high-resolution ones of DG Cir and R Mon, strongly suggests that SPH 4 and SPH4-South are Herbig Ae/Be stars. The classification of SPH4-South is further supported by using a k-NN algorithm to its position in H-K versus J-H color-color diagram. Both stars are detected in the four WISE bands and the WISE colors allow us to classify SPH4 as a Class I and SPH4-South as a Class II source. We also show that the faint nebula is most probably associated with SPH4-South. Using published results on LDN 1667 and the Gaia Early Data Release 3, we conclude that SPH4 is a member of LDN 1667. The case of SPH4-South is not clear because the determination of its distance and proper motion could be affected by the nebulosity around the star, although membership of SPH4-South to LDN 1667 cannot be ruled out.
We examine two positions, ON1 and ON2, within the Ophiuchus cloud LDN 1688 using observations made with the ISOPHOT instrument aboard the ISO satellite. The data include mid-IR spectra (~6-12{mu}m) and several photometric bands up to 200{mu}m. The da ta probe the emission from molecular PAH-type species, transiently-heated Very Small Grains (VSGs), and large classical dust grains. We compare the observations to earlier studies, especially those carried out towards an isolated translucent cloud in Chamaeleon (Paper I). The spectra towards the two LDN 1688 positions are very similar to each other, in spite of position ON1 having a larger column density and probably being subjected to a stronger radiation field. The ratios of the mid-IR features are similar to those found in other diffuse and translucent clouds. Compared to paper I, the 7.7/11.3{mu}m band ratios are lower, ~2.0, at both LDN 1688 positions. A continuum is detected in the ~10{mu}m region. This is stronger towards the position ON1 but still lower than on any of the sightlines in Paper I. The far-infrared opacities are higher than for diffuse medium. The value of the position ON2, {tau}200/N(H) = 3.9 x 10^{-25} cm^2/H, is twice the value found for ON1. The radiation field of LDN 1688 is dominated by the two embedded B type double stars, {rho} Oph AB and HD 147889, with an additional contribution from the Upper Sco OB association. The strong heating is reflected in the high colour temperature, ~24 K, of the large grain emission. Radiative transfer modelling confirms a high level of the radiation field and points to an increased abundance of PAH grains. However, when the hardening of the radiation field caused by the local B-stars is taken into account, the observations can be fitted with almost no change to the standard dust models. However, all the examined models underestimate the level of the mid-IR continuum.
113 - Yue Hu , A. Lazarian , Yuan Li 2020
Magnetic fields in the intracluster medium (ICM) affect the structure and the evolution of galaxy clusters. However, their properties are largely unknown, and measuring magnetic fields in galaxy clusters is challenging, especially on large-scales out side of individual radio sources. In this work, we probe the plane-of-the-sky orientation of magnetic fields in clusters using the intensity gradients. The technique is a branch of the Gradient Technique (GT) that employs emission intensity maps from turbulent gas. We utilize the Chandra X-ray images of the Perseus, M 87, Coma, and A2597 galaxy clusters, and the VLA radio observations of the synchrotron emission from Perseus. We find that the fields predominantly follow the sloshing arms in Perseus, which is in agreement with numerical simulations. The GT-predicted magnetic field shows signatures of magnetic draping around rising bubbles driven by supermassive black hole (SMBH) feedback in the centers of cool-core clusters, as well as draping around substructures merging with the Coma cluster. We calculate the mean-field orientation with respect to the radial direction in these clusters. In the central regions of cool-core clusters, the mean orientation of the magnetic fields is preferentially azimuthal. There is a broad agreement between the magnetic field of Perseus predicted using the X-ray and radio data. Further numerical studies and better future observations with higher resolution and the larger effective area will help reduce the uncertainties of this method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا