ترغب بنشر مسار تعليمي؟ اضغط هنا

THUE: Discovering Top-K High Utility Episodes

348   0   0.0 ( 0 )
 نشر من قبل Wensheng Gan
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Episode discovery from an event is a popular framework for data mining tasks and has many real-world applications. An episode is a partially ordered set of objects (e.g., item, node), and each object is associated with an event type. This episode can also be considered as a complex event sub-sequence. High-utility episode mining is an interesting utility-driven mining task in the real world. Traditional episode mining algorithms, by setting a threshold, usually return a huge episode that is neither intuitive nor saves time. In general, finding a suitable threshold in a pattern-mining algorithm is a trivial and time-consuming task. In this paper, we propose a novel algorithm, called Top-K High Utility Episode (THUE) mining within the complex event sequence, which redefines the previous mining task by obtaining the K highest episodes. We introduce several threshold-raising strategies and optimize the episode-weighted utilization upper bounds to speed up the mining process and effectively reduce the memory cost. Finally, the experimental results on both real-life and synthetic datasets reveal that the THUE algorithm can offer six to eight orders of magnitude running time performance improvement over the state-of-the-art algorithm and has low memory consumption.



قيم البحث

اقرأ أيضاً

Utility-driven itemset mining is widely applied in many real-world scenarios. However, most algorithms do not work for itemsets with negative utilities. Several efficient algorithms for high-utility itemset (HUI) mining with negative utilities have b een proposed. These algorithms can find complete HUIs with or without negative utilities. However, the major problem with these algorithms is how to select an appropriate minimum utility (minUtil) threshold. To address this issue, some efficient algorithms for extracting top-k HUIs have been proposed, where parameter k is the quantity of HUIs to be discovered. However, all of these algorithms can solve only one part of the above problem. In this paper, we present a method for TOP-k high-utility Itemset disCovering (TOPIC) with positive and negative utility values, which utilizes the advantages of the above algorithms. TOPIC adopts transaction merging and database projection techniques to reduce the database scanning cost, and utilizes minUtil threshold raising strategies. It also uses an array-based utility technique, which calculates the utility of itemsets and upper bounds in linear time. We conducted extensive experiments on several real and synthetic datasets, and the results showed that TOPIC outperforms state-of-the-art algorithm in terms of runtime, memory costs, and scalability.
High-utility sequential pattern mining (HUSPM) has recently emerged as a focus of intense research interest. The main task of HUSPM is to find all subsequences, within a quantitative sequential database, that have high utility with respect to a user- defined minimum utility threshold. However, it is difficult to specify the minimum utility threshold, especially when database features, which are invisible in most cases, are not understood. To handle this problem, top-k HUSPM was proposed. Up to now, only very preliminary work has been conducted to capture top-k HUSPs, and existing strategies require improvement in terms of running time, memory consumption, unpromising candidate filtering, and scalability. Moreover, no systematic problem statement has been defined. In this paper, we formulate the problem of top-k HUSPM and propose a novel algorithm called TKUS. To improve efficiency, TKUS adopts a projection and local search mechanism and employs several schemes, including the Sequence Utility Raising, Terminate Descendants Early, and Eliminate Unpromising Items strategies, which allow it to greatly reduce the search space. Finally, experimental results demonstrate that TKUS can achieve sufficiently good top-k HUSPM performance compared to state-of-the-art algorithm TKHUS-Span.
It is widely known that there is a lot of useful information hidden in big data, leading to a new saying that data is money. Thus, it is prevalent for individuals to mine crucial information for utilization in many real-world applications. In the pas t, studies have considered frequency. Unfortunately, doing so neglects other aspects, such as utility, interest, or risk. Thus, it is sensible to discover high-utility itemsets (HUIs) in transaction databases while utilizing not only the quantity but also the predefined utility. To find patterns that can represent the supporting transaction, a recent study was conducted to mine high utility-occupancy patterns whose contribution to the utility of the entire transaction is greater than a certain value. Moreover, in realistic applications, patterns may not exist in transactions but be connected to an existence probability. In this paper, a novel algorithm, called High-Utility-Occupancy Pattern Mining in Uncertain databases (UHUOPM), is proposed. The patterns found by the algorithm are called Potential High Utility Occupancy Patterns (PHUOPs). This algorithm divides user preferences into three factors, including support, probability, and utility occupancy. To reduce memory cost and time consumption and to prune the search space in the algorithm as mentioned above, probability-utility-occupancy list (PUO-list) and probability-frequency-utility table (PFU-table) are used, which assist in providing the downward closure property. Furthermore, an original tree structure, called support count tree (SC-tree), is constructed as the search space of the algorithm. Finally, substantial experiments were conducted to evaluate the performance of proposed UHUOPM algorithm on both real-life and synthetic datasets, particularly in terms of effectiveness and efficiency.
Top-k query processing finds a list of k results that have largest scores w.r.t the user given query, with the assumption that all the k results are independent to each other. In practice, some of the top-k results returned can be very similar to eac h other. As a result some of the top-k results returned are redundant. In the literature, diversified top-k search has been studied to return k results that take both score and diversity into consideration. Most existing solutions on diversified top-k search assume that scores of all the search results are given, and some works solve the diversity problem on a specific problem and can hardly be extended to general cases. In this paper, we study the diversified top-k search problem. We define a general diversified top-k search problem that only considers the similarity of the search results themselves. We propose a framework, such that most existing solutions for top-k query processing can be extended easily to handle diversified top-k search, by simply applying three new functions, a sufficient stop condition sufficient(), a necessary stop condition necessary(), and an algorithm for diversified top-k search on the current set of generated results, div-search-current(). We propose three new algorithms, namely, div-astar, div-dp, and div-cut to solve the div-search-current() problem. div-astar is an A* based algorithm, div-dp is an algorithm that decomposes the results into components which are searched using div-astar independently and combined using dynamic programming. div-cut further decomposes the current set of generated results using cut points and combines the results using sophisticated operations. We conducted extensive performance studies using two real datasets, enwiki and reuters. Our div-cut algorithm finds the optimal solution for diversified top-k search problem in seconds even for k as large as 2,000.
The k-regret query aims to return a size-k subset S of a database D such that, for any query user that selects a data object from this size-k subset S rather than from database D, her regret ratio is minimized. The regret ratio here is modeled by the relative difference in the optimality between the locally optimal object in S and the globally optimal object in D. The optimality of a data object in turn is modeled by a utility function of the query user. Unlike traditional top-k queries, the k-regret query does not minimize the regret ratio for a specific utility function. Instead, it considers a family of infinite utility functions F, and aims to find a size-k subset that minimizes the maximum regret ratio of any utility function in F. Studies on k-regret queries have focused on the family of additive utility functions, which have limitations in modeling individuals preferences and decision making processes, especially for a common observation called the diminishing marginal rate of substitution (DMRS). We introduce k-regret queries with multiplicative utility functions, which are more expressive in modeling the DMRS, to overcome those limitations. We propose a query algorithm with bounded regret ratios. To showcase the applicability of the algorithm, we apply it to a special family of multiplicative utility functions, the Cobb-Douglas family of utility functions, and a closely related family of utility functions, the Constant Elasticity of Substitution family of utility functions, both of which are frequently used utility functions in microeconomics. After a further study of the query properties, we propose a heuristic algorithm that produces even smaller regret ratios in practice. Extensive experiments on the proposed algorithms confirm that they consistently achieve small maximum regret ratios.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا