ﻻ يوجد ملخص باللغة العربية
Balancing is a fundamental need for legged robots due to their unstable floating-base nature. Balance control has been thoroughly studied for simple models such as the linear inverted pendulum thanks to the concept of the instantaneous capture point (ICP), yet the constant center of mass height assumption limits the application. This paper explores balancing of the variable-height inverted pendulum (VHIP) model by introducing the emph{instantaneous capture input} (ICI), an extension of the ICP based on its key properties. Namely, the ICI can be computed as a function of the state, and when this function is used as the control policy, the ICI is rendered stationary and the system will eventually come to a stop. This characterization induces an analytical region of capturable states for the VHIP, which can be used to conceptually guide where to step. To further address state and control constraints during recovery, we present and theoretically analyze an explicit ICI-based controller with online optimal feedback gains. Simulations demonstrate the validity of our controller for capturability maintenance compared to an approach based on the divergent component of motion.
Achieving closed-loop control over wireless is crucial in realizing the vision of Industry 4.0 and beyond. This demonstration shows the viability of closed-loop control over wireless through a high-performance wireless solution. The closed-loop contr
Soft pneumatic legged robots show promise in their ability to traverse a range of different types of terrain, including natural unstructured terrain met in applications like precision agriculture. They can adapt their body morphology to the intricaci
The topic of this paper is to use an intuitive model-based approach to design a networked controller for a recent benchmark scenario. The benchmark problem is to remotely control a two-wheeled inverted pendulum robot via W-LAN communication. The robo
The shaking force balancing is a well-known problem in the design of high-speed robotic systems because the variable dynamic loads cause noises, wear and fatigue of mechanical structures. Different solutions, for full or partial shaking force balanci
The ability of legged systems to traverse highly-constrained environments depends by and large on the performance of their motion and balance controllers. This paper presents a controller that excels in a scenario that most state-of-the-art balance c