ﻻ يوجد ملخص باللغة العربية
We investigate strongly asymmetric self-assembled nanostructures with one of dimensions reaching hundreds of nanometers. Close to the nanowire-like type of confinement, such objects are sometimes assigned as one-dimensional in nature. Here, we directly observe the spectrum of exciton excited states corresponding to longitudinal quantization. This is based on probing the optical transitions via polarization-resolved microphotoluminescence excitation ($mu$PLE) measurement performed on single nanostructures combined with theoretical calculation of neutral and charged exciton optical properties. We successfully probe absorption-like spectra for individual bright states forming the exciton ground-state fine structure, as well as for the negatively charged exciton. Confronting the calculated spectrum of excitonic absorption with $mu$PLE traces, we identify optical transitions involving states that contain carriers at various excited levels related to the longest dimension. Based on cross-polarized excitation-detection scheme, we show very well conserved spin configuration during orbital relaxation of the exciton from a number of excited states comparable to the quasi-resonant pumping via the optical phonon, and no polarization memory for the trion, as theoretically expected.
In this work we demonstrate a triggered single-photon source operating at the telecom C-band with photon extraction efficiency exceeding any reported values in this range. The non-classical light emission with low probability of the multiphoton event
In this work, we demonstrate reconfigurable frequency manipulation of quantum states of light in the telecom C-band. Triggered single photons are encoded in a superposition state of three channels using sidebands up to 53 GHz created by an off-the-sh
Solid-state quantum emitters with manipulable spin-qubits are promising platforms for quantum communication applications. Although such light-matter interfaces could be realized in many systems only a few allow for light emission in the telecom bands
Most quantum communication schemes aim at the long-distance transmission of quantum information. In the quantum repeater concept, the transmission line is subdivided into shorter links interconnected by entanglement distribution via Bell-state measur
Low temperature and polarization resolved magneto-photoluminescence experiments are used to investigate the properties of dark excitons and dark trions in a monolayer of WS$_2$ encapsulated in hexagonal BN (hBN). We find that this system is an $n$-ty