ترغب بنشر مسار تعليمي؟ اضغط هنا

FreeTickets: Accurate, Robust and Efficient Deep Ensemble by Training with Dynamic Sparsity

66   0   0.0 ( 0 )
 نشر من قبل Shiwei Liu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent works on sparse neural networks have demonstrated that it is possible to train a sparse network in isolation to match the performance of the corresponding dense networks with a fraction of parameters. However, the identification of these performant sparse neural networks (winning tickets) either involves a costly iterative train-prune-retrain process (e.g., Lottery Ticket Hypothesis) or an over-extended sparse training time (e.g., Training with Dynamic Sparsity), both of which would raise financial and environmental concerns. In this work, we attempt to address this cost-reducing problem by introducing the FreeTickets concept, as the first solution which can boost the performance of sparse convolutional neural networks over their dense network equivalents by a large margin, while using for complete training only a fraction of the computational resources required by the latter. Concretely, we instantiate the FreeTickets concept, by proposing two novel efficient ensemble methods with dynamic sparsity, which yield in one shot many diverse and accurate tickets for free during the sparse training process. The combination of these free tickets into an ensemble demonstrates a significant improvement in accuracy, uncertainty estimation, robustness, and efficiency over the corresponding dense (ensemble) networks. Our results provide new insights into the strength of sparse neural networks and suggest that the benefits of sparsity go way beyond the usual training/inference expected efficiency. We will release all codes in https://github.com/Shiweiliuiiiiiii/FreeTickets.



قيم البحث

اقرأ أيضاً

In order to train robust deep learning models, large amounts of labelled data is required. However, in the absence of such large repositories of labelled data, unlabeled data can be exploited for the same. Semi-Supervised learning aims to utilize suc h unlabeled data for training classification models. Recent progress of self-training based approaches have shown promise in this area, which leads to this study where we utilize an ensemble approach for the same. A by-product of any semi-supervised approach may be loss of calibration of the trained model especially in scenarios where unlabeled data may contain out-of-distribution samples, which leads to this investigation on how to adapt to such effects. Our proposed algorithm carefully avoids common pitfalls in utilizing unlabeled data and leads to a more accurate and calibrated supervised model compared to vanilla self-training based student-teacher algorithms. We perform several experiments on the popular STL-10 database followed by an extensive analysis of our approach and study its effects on model accuracy and calibration.
While large scale pre-training has achieved great achievements in bridging the gap between vision and language, it still faces several challenges. First, the cost for pre-training is expensive. Second, there is no efficient way to handle the data noi se which degrades model performance. Third, previous methods only leverage limited image-text paired data, while ignoring richer single-modal data, which may result in poor generalization to single-modal downstream tasks. In this work, we propose an EfficientCLIP method via Ensemble Confident Learning to obtain a less noisy data subset. Extra rich non-paired single-modal text data is used for boosting the generalization of text branch. We achieve the state-of-the-art performance on Chinese cross-modal retrieval tasks with only 1/10 training resources compared to CLIP and WenLan, while showing excellent generalization to single-modal tasks, including text retrieval and text classification.
We reduce training time in convolutional networks (CNNs) with a method that, for some of the mini-batches: a) scales down the resolution of input images via downsampling, and b) reduces the forward pass operations via pooling on the convolution filte rs. Training is performed in an interleaved fashion; some batches undergo the regular forward and backpropagation passes with original network parameters, whereas others undergo a forward pass with pooled filters and downsampled inputs. Since pooling is differentiable, the gradients of the pooled filters propagate to the original network parameters for a standard parameter update. The latter phase requires fewer floating point operations and less storage due to the reduced spatial dimensions in feature maps and filters. The key idea is that this phase leads to smaller and approximate updates and thus slower learning, but at significantly reduced cost, followed by passes that use the original network parameters as a refinement stage. Deciding how often and for which batches the downsmapling occurs can be done either stochastically or deterministically, and can be defined as a training hyperparameter itself. Experiments on residual architectures show that we can achieve up to 23% reduction in training time with minimal loss in validation accuracy.
Recent approaches to efficiently ensemble neural networks have shown that strong robustness and uncertainty performance can be achieved with a negligible gain in parameters over the original network. However, these methods still require multiple forw ard passes for prediction, leading to a significant computational cost. In this work, we show a surprising result: the benefits of using multiple predictions can be achieved `for free under a single models forward pass. In particular, we show that, using a multi-input multi-output (MIMO) configuration, one can utilize a single models capacity to train multiple subnetworks that independently learn the task at hand. By ensembling the predictions made by the subnetworks, we improve model robustness without increasing compute. We observe a significant improvement in negative log-likelihood, accuracy, and calibration error on CIFAR10, CIFAR100, ImageNet, and their out-of-distribution variants compared to previous methods.
Todays deep learning models are primarily trained on CPUs and GPUs. Although these models tend to have low error, they consume high power and utilize large amount of memory owing to double precision floating point learning parameters. Beyond the Moor es law, a significant portion of deep learning tasks would run on edge computing systems, which will form an indispensable part of the entire computation fabric. Subsequently, training deep learning models for such systems will have to be tailored and adopted to generate models that have the following desirable characteristics: low error, low memory, and low power. We believe that deep neural networks (DNNs), where learning parameters are constrained to have a set of finite discrete values, running on neuromorphic computing systems would be instrumental for intelligent edge computing systems having these desirable characteristics. To this extent, we propose the Combinatorial Neural Network Training Algorithm (CoNNTrA), that leverages a coordinate gradient descent-based approach for training deep learning models with finite discrete learning parameters. Next, we elaborate on the theoretical underpinnings and evaluate the computational complexity of CoNNTrA. As a proof of concept, we use CoNNTrA to train deep learning models with ternary learning parameters on the MNIST, Iris and ImageNet data sets and compare their performance to the same models trained using Backpropagation. We use following performance metrics for the comparison: (i) Training error; (ii) Validation error; (iii) Memory usage; and (iv) Training time. Our results indicate that CoNNTrA models use 32x less memory and have errors at par with the Backpropagation models.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا