ترغب بنشر مسار تعليمي؟ اضغط هنا

SRGA J124404.1-632232/SRGU J124403.8-632231: a new X-ray pulsar discovered in the all-sky survey by SRG

67   0   0.0 ( 0 )
 نشر من قبل Victor Doroshenko
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Ongoing all-sky surveys by the the eROSITA and the Mikhail Pavlinsky ART-XC telescopes on-board the Spectrum Roentgen Gamma (SRG) mission have already revealed over a million of X-ray sources. One of them, SRGA J124404.1-632232/SRGU J124403.8-632231, was detected as a new source in the third (of the planned eight) consecutive X-ray surveys by ART-XC. Based on the properties of the identified optical counterpart it was classified as a candidate X-ray binary (XRB). We report on the follow-up observations of this source with Nuclear Spectroscopic Telescope Array (NuSTAR), Neil Gehrels Swift Observatory (Swift), and the Southern African Large Telescope (SALT), which allowed us to unambiguously confirm the initial identification and establish SRGU J124403.8-632231 as a new X-ray pulsar with a spin period of ~538 s and a Be-star companion, making it one of the first Galactic X-ray pulsars discovered by SRG.



قيم البحث

اقرأ أيضاً

Supernova remnants (SNRs) are observable for about 6-15x10^4 years before they fade into the Galactic interstellar medium. With a Galactic supernova rate of approximately two per century, we can expect to have of the order of 1200 SNRs in our Galaxy. However, only about 300 of them are known to date, with the majority having been discovered in Galactic plane radio surveys. Given that these SNRs represent the brightest tail of the distribution and are mostly located close to the plane, they are not representative of the complete sample. Here we report findings from the search for new SNRs in the eROSITA all-sky survey data which led to the detection of one of the largest SNRs discovered at wavelengths other than the radio: G249.5+24.5. This source is located at a relatively high Galactic latitude, where SNRs are not usually expected to be found. The remnant, Hoinga, has a diameter of about 4.4 degrees and shows a circular shaped morphology with diffuse X-ray emission filling almost the entire remnant. Spectral analysis of the remnant emission reveals that an APEC spectrum from collisionally ionised diffuse gas and a plane-parallel shock plasma model with non-equilibrium ionisation are both able to provide an adequate description of the data, suggesting a gas temperature of the order of kT = 0.1 keV and an absorbing column density of N_H=3.6 x 10^20 cm^-2. Subsequent searches for a radio counterpart of the Hoinga remnant identified its radio emission in archival data from the Continuum HI Parkes All-Sky Survey (CHIPASS) and the 408-MHz `Haslam all-sky survey. The radio spectral index alpha=-0.69 +- 0.08 obtained from these data definitely confirms the SNR nature of Hoinga. From its size and X-ray and radio spectral properties we conclude that Hoinga is a middle-aged Vela-like SNR located at a distance of about twice that of the Vela SNR, i.e. at ~500 pc.
107 - I.A. Mereminskiy 2021
Context: During the ongoing all-sky survey, the Mikhail Pavlinsky ART-XC telescope on board the SRG observatory should discover new X-ray sources, many of which can be transient. Here we report on the discovery and multiwavelength follow-up of a pecu liar X-ray source SRGA J043520.9+552226=SRGe J043523.3+552234 - the high-energy counterpart of the optical transient AT2019wey. Aims: Thanks to its sensitivity and the survey strategy, the Mikhail Pavlinsky ART-XC telescope uncovers poorly studied weak transient populations. Using a synergy with current public optical surveys, we are aiming at revealing the nature of these transients to study its parent populations. The SRGA J043520.9+552226 is the first transient detected by ART-XC which has a bright optical counterpart suitable for further studies. Methods: We have used available public X-ray and optical data and observations with SRG, INTEGRAL, NuSTAR, NICER and ground-based telescopes to investigate the source spectral energy distributions at different phases of the outburst. Results: Based on X-ray spectral and timing properties derived from space observations, optical spectroscopy and photometry obtained with the 2.5-m and RC600 CMO SAI MSU telescopes, we propose the source to be a black hole in a low-mass close X-ray binary system.
eROSITA (extended ROentgen Survey with an Imaging Telescope Array) is the core instrument on the Russian Spektrum-Roentgen-Gamma (SRG) mission which is scheduled for launch in late 2012. eROSITA is fully approved and funded by the German Space Agency DLR and the Max-Planck-Society. The design driving science is the detection of 50 - 100 thousands Clusters of Galaxies up to redshift z ~ 1.3 in order to study the large scale structure in the Universe and test cosmological models, especially Dark Energy. This will be accomplished by an all-sky survey lasting for four years plus a phase of pointed observations. eROSITA consists of seven Wolter-I telescope modules, each equipped with 54 Wolter-I shells having an outer diameter of 360 mm. This would provide and effective area at 1.5 keV of ~ 1500 cm2 and an on axis PSF HEW of 15 which would provide an effective angular resolution of 25-30. In the focus of each mirror module, a fast frame-store pn-CCD will provide a field of view of 1 deg in diameter for an active FOV of ~ 0.83 deg^2. At the time of writing the instrument development is currently in phase C/D.
We present a first catalog of sources detected by the Mikhail Pavlinsky ART-XC telescope aboard the SRG observatory in the 4-12 keV energy band during its on-going all-sky survey. The catalog comprises 867 sources detected on the combined map of the first two 6-month scans of the sky (Dec. 2019 - Dec. 2020) - ART-XC sky surveys 1 and 2, or ARTSS12. The achieved sensitivity to point sources varies between ~5x10-12 erg/s/cm2 near the Ecliptic plane and better than 10-12 erg/s/cm2 (4-12 keV) near the Ecliptic poles, and the typical localization accuracy is ~15 arcsec. Among the 750 sources of known or suspected origin in the catalog, 56% are extragalactic (mostly active galactic nuclei (AGN) and clusters of galaxies) and the rest are Galactic (mostly cataclysmic variables (CVs) and low- and high-mass X-ray binaries). For 116 sources ART-XC has detected X-rays for the first time. Although the majority of these (~80) are expected to be spurious (for the adopted detection threshold), there can be a significant number of newly discovered astrophysical objects. We have started a program of optical follow-up observations of the new and previously unidentified X-ray sources, which has already led to the identification of several AGN and CVs. With the SRG all-sky survey planned to continue for a total of 4 years, we can expect the ART-XC survey in the 4-12 keV band to significantly surpass the previous surveys carried out in similar (medium X-ray) energy bands in terms of the combination of angular resolution, sensitivity, and sky coverage.
eROSITA (extended ROentgen Survey with an Imaging Telescope Array) instrument onboard the Russian-German `Spectrum-Roentgen-Gamma (SRG) mission observed the Her X-1/HZ Her binary system in multiple scans over the source during the first and second SR G all-sky surveys. Both observations occurred during a low state of the X-ray source when the outer parts of the accretion disk blocked the neutron star from view. The orbital modulation of the X-ray flux was detected during the low states. We argue that the detected X-ray radiation results from scattering of the emission of the central source by three distinct regions: (a) an optically thin hot corona with temperature $sim (2-4) times 10^6$ K above the irradiated hemisphere of the optical star; (b) an optically thin hot halo above the accretion disk; and (c) the optically thick cold atmosphere of the optical star. The latter region effectively scatters photons with energies above $5-6$ keV.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا