ﻻ يوجد ملخص باللغة العربية
Multiple-input multiple-output non-orthogonal multiple access (MIMO-NOMA) cellular network is promising for supporting massive connectivity. This paper exploits low-latency machine learning in the MIMO-NOMA uplink transmission environment, where a substantial amount of data must be uploaded from multiple data sources to a one-hop away edge server for machine learning. A delay-aware edge learning framework with the collaboration of data sources, the edge server, and the base station, referred to as DACEL, is proposed. Based on the delay analysis of DACEL, a NOMA channel allocation algorithm is further designed to minimize the learning delay. The simulation results show that the proposed algorithm outperforms the baseline schemes in terms of learning delay reduction.
In this paper, we propose a multiple-input multipleoutput (MIMO) transmission strategy that is closer to the Shannon limit than the existing strategies. Different from most existing strategies which only consider uniformly distributed discrete input
This paper considers the application of reconfigurable intelligent surfaces (RISs) (a.k.a. intelligent reflecting surfaces (IRSs)) to assist multiuser multiple-input multiple-output (MIMO) uplink transmission from several multi-antenna user terminals
In this paper, we study Full Duplex (FD) Multiple-Input Multiple-Output (MIMO) radios for simultaneous data communication and control information exchange. Capitalizing on a recently proposed FD MIMO architecture combining digital transmit and receiv
The scenario of an uplink two-user non-orthogonal multiple access (NOMA) communication system is analytically studied when it operates in the short packet transmission regime. The considered users support mobility and each is equipped with a single a
Accurate downlink channel information is crucial to the beamforming design, but it is difficult to obtain in practice. This paper investigates a deep learning-based optimization approach of the downlink beamforming to maximize the system sum rate, wh