Accelerating multi-modal magnetic resonance (MR) imaging is a new and effective solution for fast MR imaging, providing superior performance in restoring the target modality from its undersampled counterpart with guidance from an auxiliary modality. However, existing works simply introduce the auxiliary modality as prior information, lacking in-depth investigations on the potential mechanisms for fusing two modalities. Further, they usually rely on the convolutional neural networks (CNNs), which focus on local information and prevent them from fully capturing the long-distance dependencies of global knowledge. To this end, we propose a multi-modal transformer (MTrans), which is capable of transferring multi-scale features from the target modality to the auxiliary modality, for accelerated MR imaging. By restructuring the transformer architecture, our MTrans gains a powerful ability to capture deep multi-modal information. More specifically, the target modality and the auxiliary modality are first split into two branches and then fused using a multi-modal transformer module. This module is based on an improved multi-head attention mechanism, named the cross attention module, which absorbs features from the auxiliary modality that contribute to the target modality. Our framework provides two appealing benefits: (i) MTrans is the first attempt at using improved transformers for multi-modal MR imaging, affording more global information compared with CNN-based methods. (ii) A new cross attention module is proposed to exploit the useful information in each branch at different scales. It affords both distinct structural information and subtle pixel-level information, which supplement the target modality effectively.