ﻻ يوجد ملخص باللغة العربية
A setup of a unique x-ray source is put forward employing a relativistic electron beam interacting with two counter-propagating laser pulses in the nonlinear few-photon regime. In contrast to Compton scattering (CS) sources, the envisaged x-ray source exhibits an extremely narrow relative bandwidth of $10^{-5}$ to $10^{-4}$, comparable to the x-ray free-electron laser (XFEL). The brilliance of the x-rays can be $2 - 3$ orders of magnitude higher than a state-of-the-art CS source, while the angle spreading of the radiation is much smaller. By tuning the laser intensities and the electron energy, one can realize either a single peak or a comb-like x-ray source around keV energy. The laser intensity and the electron energy in the suggested setup are rather moderate, rendering this scheme compact and table-top size, as opposed to XFEL and synchrotron infrastructures.
A feasible method is proposed to generate isolated attosecond terawatt x-ray radiation pulses in high-gain free-electron lasers. In the proposed scheme, a frequency chirped laser pulse is employed to generate a gradually-varied spacing current enhanc
In the field of beam physics, two frontier topics have taken center stage due to their potential to enable new approaches to discovery in a wide swath of science. These areas are: advanced, high gradient acceleration techniques, and x-ray free electr
We propose a new scheme to generate high-brightness and temporal coherent soft x-ray radiation in a seeded free-electron laser. The proposed scheme is based the coherent harmonic generation (CHG) and superradiant principles. A CHG scheme is first use
A new method to generate short wavelength Free Electron Laser output with modulated polarisation at attosecond timescales is presented. Simulations demonstrate polarisation switching timescales that are four orders of magnitude faster than the curren
Fine time-resolved analysis of matter - i.e. spectroscopy and photon scattering - in the linear response regime requires a fs-scale pulsed, high repetition rate, fully coherent X-ray source. A seeded Free-Electron Laser (FEL) driven by a Super-Conduc