ﻻ يوجد ملخص باللغة العربية
Anyons are mainly studied and considered in two spatial dimensions. For fractals, the scaling dimension that characterizes the system can be non integer and can take values between that of a standard one-dimensional or two-dimensional system. Generating Hamiltonians that meet locality conditions and support anyons is not a simple task. Here, we construct a local Hamiltonian on a fractal lattice which realizes physics similar to the fractional quantum Hall effect. The fractal lattice is obtained from a second generation Sierpinski carpet, which has 64 sites, and is characterized by a Hausdorff dimension of 1.89. We demonstrate that the proposed local Hamiltonian acting on the fractal geometry has Laughlin-type topological order by creating anyons and then studying their charge and braiding statistics. We also find that the energy gap between the ground state and the first excited state is approximately three times larger for the fractal lattice than for a standard square lattice with 64 sites, and the model on the fractal lattice is significantly more robust against disorder. We propose a scheme to implement fractal lattices and our proposed local Hamiltonian for ultracold atoms in optical lattices. The discussed scheme could also be utilized to study integer quantum Hall phases and the physics of other quantum systems on fractal lattices.
We analyze the proposal of achieving a Mott state of Laughlin wave functions in an optical lattice [M. Popp {it et al.}, Phys. Rev. A 70, 053612 (2004)] and study the consequences of considering the anharmonic corrections to each single site potentia
We propose the construction of a many-body phase of matter with fractal structure using arrays of Rydberg atoms. The degenerate low energy excited states of this phase form a self-similar fractal structure. This phase is analogous to the so-called ty
Disorder and localization have dramatic influence on the topological properties of a quantum system. While strong disorder can close the band gap thus depriving topological materials of topological features, disorder may also induce topology from tri
We report the experimental realization of a topological Creutz ladder for ultracold fermionic atoms in a resonantly driven 1D optical lattice. The two-leg ladder consists of the two lowest orbital states of the optical lattice and the cross inter-leg
A large number of symmetry-protected topological (SPT) phases have been hypothesized for strongly interacting spin-1/2 systems in one dimension. Realizing these SPT phases, however, often demands fine-tunings hard to reach experimentally. And the lac