ﻻ يوجد ملخص باللغة العربية
The Einasto profile has been successful in describing the density profiles of dark matter haloes in $Lambda$CDM N-body simulations. It has also been able to describe multiple components in the surface brightness profiles of galaxies. However, analytically projecting it to calculate quantities under projection is challenging. In this paper, we will see the development of a highly accurate analytical approximation for the mass (or counts) enclosed in an infinitely long cylindrical column for Einasto profiles--also known as the projected mass (or counts)--using a novel methodology. We will then develop a self-consistent high-accuracy model for the surface density from the expression for the projected mass. Both models are quite accurate for a broad family of functions, with a shape parameter $alpha$ varying by a factor of 100 in the range $0.05 lesssim alpha lesssim 5.0$, with fractional errors $sim 10^{-6}$ for $alpha lesssim 0.4$. Profiles with $alpha lesssim 0.4$ have been shown to fit the density profiles of dark matter haloes in N-body simulations as well as the luminosity profiles of the outer components of massive galaxies. Since the projected mass and the surface density are used in gravitational lensing, I will illustrate how these models facilitate (for the first time) analytical computation of several quantities of interest in lensing due to Einasto profiles. The models, however, are not limited to lensing and apply to similar quantities under projection, such as the projected luminosity, the projected (columnar) number counts and the projected density or the surface brightness.
Polytropes have gained renewed interest because they account for several seemingly-disconnected observational properties of galaxies. Here we study if polytropes are also able to explain the stellar mass distribution within galaxies. We develop a cod
We introduce a method for producing a galaxy sample unbiased by surface brightness and stellar mass, by selecting star-forming galaxies via the positions of core-collapse supernovae (CCSNe). Whilst matching $sim$2400 supernovae from the SDSS-II Super
We use data from the All Wavelength Extended Groth Strip International Survey to construct stacked X-ray maps of optically bright active galaxies (AGN) and an associated control sample of galaxies at high redshift (z less than 0.6). From our analysis
We present the analytical framework for converting projected light distributions with a Sersic profile into three-dimensional light distributions for stellar systems of arbitrary triaxial shape. The main practical result is the definition of a simple
A recent study has claimed that the rotation curve shapes and mass densities of Low Surface Brightness (LSB) galaxies are largely consistent with $Lambda$CDM predictions, in contrast to a large body of observational work. I demonstrate that the metho