ﻻ يوجد ملخص باللغة العربية
The Landau-Lifshitz-Gilbert (LLG) equation, used to model magneto-dynamics in ferromagnets, tacitly assumes that the angular momentum associated with spin precession can relax instantaneously when the real or effective magnetic field causing the precession is turned off. This neglect of spin inertia is unphysical and would violate energy conservation. Recently, the LLG equation was modified to account for inertia effects. The consensus, however, seems to be that such effects would be unimportant in slow magneto-dynamics that take place over time scales much longer that the relaxation time of the angular momentum, which is typically few fs to perhaps ~100 ps in ferromagnets. Here, we show that there is at least one very serious and observable effect of spin inertia even in slow magneto-dynamics. It involves the switching error probability associated with flipping the magnetization of a nanoscale ferromagnet with an external agent, such as a magnetic field. The switching may take ~ns to complete when the field strength is close to the threshold value for switching, which is much longer than the angular momentum relaxation time, and yet the effect of spin inertia is felt in the switching error probability. This is because the ultimate fate of a switching trajectory, i.e. whether it results in success or failure, is influenced by what happens in the first few ps of the switching action when nutational dynamics due to spin inertia holds sway. Spin inertia increases the error probability, which makes the switching more error-prone. This has vital technological significance because it relates to the reliability of magnetic logic and memory.
The magneto-optic Voigt effect is observed in a synthetic diamond membrane with a substitutional nitrogen defect concentration in the order of 200 ppm and a nitrogen-vacancy defect sub-ensemble generated through neutron irradiation and annealing. The
The magnetic field associated with a picosecond intense electron pulse is shown to switch locally the magnetization of extended films and nanostructures and to ignite locally spin waves excitations. Also, topologically protected magnetic textures suc
Magnetic damping is a key metric for emerging technologies based on magnetic nanoparticles, such as spin torque memory and high-resolution biomagnetic imaging. Despite its importance, understanding of magnetic dissipation in nanoscale ferromagnets re
The controllable magnetic skyrmion motion represents a highly concerned issue in preparing advanced skyrmion-based spintronic devices. Specifically, magnon-driven skyrmion motion can be easily accessible in both metallic and insulating magnets, and t
We discuss the influence of the magneto-coulomb effect (MCE) on the magnetoconductance of spin valve devices. We show that MCE can induce magnetoconductances of several per cents or more, dependent on the strength of the coulomb blockade. Furthermore